IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924014243.html
   My bibliography  Save this article

Oscillatory regimes and transition to chaos in a Darcy–Brinkman model under quasi-periodic gravitational modulation

Author

Listed:
  • Allali, Karam

Abstract

This research paper examines the chaos control in porous media convection by imposing an external excitation on the system. The excitation is under the form of a quasi-periodic gravitational modulation with two incommensurate frequencies σ1 and σ2. This will be accomplished by taking into consideration a two-dimensional rectangular porous layer that is saturated with fluid, heated from below, and subjected to a quasi-periodic vertical gravitational modulation. The model consists of a nonlinear heat equation coupled with a system of equations representing motion under the Darcy–Brinkman law. Utilizing a spectral approach, the problem is simplified into a set of four ordinary differential equations. Three equilibria of the system are given, namely the motionless convection steady state and convection steady states. The local and global stability for the motionless convection steady state were performed. Additionally, the local stability of the other equilibria is fulfilled. The fourth-order Runge–Kutta method is used to solve the system numerically. Numerical simulations have shown that the quasi-periodic gravitational modulation plays an essential role on the fluid dynamics behavior. We find chaotic and oscillating convection regimes depending on the ratio of gravitational modulation frequencies. It was demonstrated that by properly adjusting the frequencies ratio η=σ2/σ1, transition from oscillating regime to chaos is observed and vice versa. Those transitions were checked by Poincaré section, Lyapunov exponent or phase diagram. It was concluded that controlling the dynamical behavior of the fluid in porous media may be achieved by implementing an appropriate quasi-periodic gravitational modulation.

Suggested Citation

  • Allali, Karam, 2025. "Oscillatory regimes and transition to chaos in a Darcy–Brinkman model under quasi-periodic gravitational modulation," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014243
    DOI: 10.1016/j.chaos.2024.115872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noorani, M.S.M. & Hashim, I. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2007. "Comparing numerical methods for the solutions of the Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1296-1304.
    2. Ferreira, Bianca Borem & de Paula, Aline Souza & Savi, Marcelo Amorim, 2011. "Chaos control applied to heart rhythm dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 44(8), pages 587-599.
    3. Karam Allali, 2018. "Suppression of Chaos in Porous Media Convection under Multifrequency Gravitational Modulation," Advances in Mathematical Physics, Hindawi, vol. 2018, pages 1-8, April.
    4. Manal Alqhtani & Mohamed M. Khader & Khaled Mohammed Saad, 2023. "Numerical Simulation for a High-Dimensional Chaotic Lorenz System Based on Gegenbauer Wavelet Polynomials," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
    5. Karam Allali, 2018. "Suppression of Chaos in Porous Media Convection under Multifrequency Gravitational Modulation," Advances in Mathematical Physics, John Wiley & Sons, vol. 2018(1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lounis, Fatima & Boukabou, Abdelkrim & Soukkou, Ammar, 2020. "Implementing high-order chaos control scheme for cardiac conduction model with pathological rhythms," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Al-Sawalha, M. Mossa & Noorani, M.S.M. & Hashim, I., 2009. "On accuracy of Adomian decomposition method for hyperchaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1801-1807.
    3. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "A new application of variational iteration method for the chaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1604-1610.
    4. Chagas, T.P. & Toledo, B.A. & Rempel, E.L. & Chian, A.C.-L. & Valdivia, J.A., 2012. "Optimal feedback control of the forced van der Pol system," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1147-1156.
    5. Lahmiri, Salim, 2017. "A study on chaos in crude oil markets before and after 2008 international financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 389-395.
    6. Fouego, Dorota Youmbi & Dongmo, Eric Donald & Woafo, Paul, 2021. "Voltages responses and synchronization of an array of Grudzinski and Zebrowski oscillators coupled to an electrical load," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Lahmiri, Salim, 2017. "On fractality and chaos in Moroccan family business stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 29-39.
    8. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    9. Hashim, I. & Chowdhury, M.S.H. & Mawa, S., 2008. "On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 823-827.
    10. Eshaghi, Shiva & Khoshsiar Ghaziani, Reza & Ansari, Alireza, 2020. "Hopf bifurcation, chaos control and synchronization of a chaotic fractional-order system with chaos entanglement function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 321-340.
    11. Remus-Daniel Ene & Nicolina Pop, 2023. "Optimal Homotopy Asymptotic Method for an Anharmonic Oscillator: Application to the Chen System," Mathematics, MDPI, vol. 11(5), pages 1-14, February.
    12. Lahmiri, Salim, 2017. "Investigating existence of chaos in short and long term dynamics of Moroccan exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 655-661.
    13. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "Efficacy of variational iteration method for chaotic Genesio system – Classical and multistage approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2152-2159.
    14. Semenov, Vladimir V. & Bukh, Andrei V. & Semenova, Nadezhda, 2023. "Delay-induced self-oscillation excitation in the Fitzhugh–Nagumo model: Regular and chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    15. Chowdhury, M.S.H. & Hashim, I. & Momani, S., 2009. "The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1929-1937.
    16. Asher Yahalom & Natalia Puzanov, 2024. "Feedback Stabilization Applied to Heart Rhythm Dynamics Using an Integro-Differential Method," Mathematics, MDPI, vol. 12(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.