IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924005083.html
   My bibliography  Save this article

Grain boundary control for high-reliability HfO2-based RRAM

Author

Listed:
  • Jeong, Dong Geun
  • Park, Eunpyo
  • Jo, Yooyeon
  • Yang, Eunyeong
  • Noh, Gichang
  • Lee, Dae Kyu
  • Kim, Min Jee
  • Jeong, YeonJoo
  • Jang, Hyun Jae
  • Joe, Daniel J.
  • Chang, Jiwon
  • Kwak, Joon Young

Abstract

Recently, neuromorphic computing has emerged as a promising solution to the limitations of conventional von Neumann computing architectures. Two-terminal memristors, particularly resistive random-access memory (RRAM), are gaining attention because of their structural resemblance to biological synapses, enabling the emulation of neuromorphic synaptic operations. Metal oxide-based RRAM leverages the formation and rupture of conductive filaments based on oxygen vacancies for resistive switching. Despite extensive research on conductive filament formation in amorphous and crystalline configurations, understanding of the impact of grain sizes and boundaries on RRAM properties remains limited. In this study, we investigate the influence of grain conditions on addressing challenges such as high operating voltages and large resistance variations during switching operations using a Ti/HfO2/Pt structure. Additionally, this study extends the application of HfO2-based RRAM to neuromorphic computing, demonstrating linear synaptic weight updates, which are essential for constructing accurate neuromorphic systems. Our device has better reliability than amorphous HfO2-based RRAM, which we achieve by precisely manipulating grain sizes and boundaries depending on the annealing conditions to solve cycle-to-cycle and device-to-device variations. Our experimental results suggest the importance of precise grain control for fabricating highly reliable and robust RRAM and artificial synaptic devices.

Suggested Citation

  • Jeong, Dong Geun & Park, Eunpyo & Jo, Yooyeon & Yang, Eunyeong & Noh, Gichang & Lee, Dae Kyu & Kim, Min Jee & Jeong, YeonJoo & Jang, Hyun Jae & Joe, Daniel J. & Chang, Jiwon & Kwak, Joon Young, 2024. "Grain boundary control for high-reliability HfO2-based RRAM," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924005083
    DOI: 10.1016/j.chaos.2024.114956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924005083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924005083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.