IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i8p219-d619875.html
   My bibliography  Save this article

Spiking Neural Network-Based Near-Sensor Computing for Damage Detection in Structural Health Monitoring

Author

Listed:
  • Francesco Barchi

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” (DEI), Università di Bologna, 40126 Bologna, Italy
    These authors contributed equally to this work.)

  • Luca Zanatta

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” (DEI), Università di Bologna, 40126 Bologna, Italy
    These authors contributed equally to this work.)

  • Emanuele Parisi

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” (DEI), Università di Bologna, 40126 Bologna, Italy
    These authors contributed equally to this work.)

  • Alessio Burrello

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” (DEI), Università di Bologna, 40126 Bologna, Italy)

  • Davide Brunelli

    (Department of Industrial Engineering (DII), Università di Trento, 38122 Trento, Italy)

  • Andrea Bartolini

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” (DEI), Università di Bologna, 40126 Bologna, Italy)

  • Andrea Acquaviva

    (Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” (DEI), Università di Bologna, 40126 Bologna, Italy)

Abstract

In this work, we present an innovative approach for damage detection of infrastructures on-edge devices, exploiting a brain-inspired algorithm. The proposed solution exploits recurrent spiking neural networks (LSNNs), which are emerging for their theoretical energy efficiency and compactness, to recognise damage conditions by processing data from low-cost accelerometers (MEMS) directly on the sensor node. We focus on designing an efficient coding of MEMS data to optimise SNN execution on a low-power microcontroller. We characterised and profiled LSNN performance and energy consumption on a hardware prototype sensor node equipped with an STM32 embedded microcontroller and a digital MEMS accelerometer. We used a hardware-in-the-loop environment with virtual sensors generating data on an SPI interface connected to the physical microcontroller to evaluate the system with a data stream from a real viaduct. We exploited this environment also to study the impact of different on-sensor encoding techniques, mimicking a bio-inspired sensor able to generate events instead of accelerations. Obtained results show that the proposed optimised embedded LSNN (eLSNN), when using a spike-based input encoding technique, achieves 54% lower execution time with respect to a naive LSNN algorithm implementation present in the state-of-the-art. The optimised eLSNN requires around 47 kCycles, which is comparable with the data transfer cost from the SPI interface. However, the spike-based encoding technique requires considerably larger input vectors to get the same classification accuracy, resulting in a longer pre-processing and sensor access time. Overall the event-based encoding techniques leads to a longer execution time (1.49×) but similar energy consumption. Moving this coding on the sensor can remove this limitation leading to an overall more energy-efficient monitoring system.

Suggested Citation

  • Francesco Barchi & Luca Zanatta & Emanuele Parisi & Alessio Burrello & Davide Brunelli & Andrea Bartolini & Andrea Acquaviva, 2021. "Spiking Neural Network-Based Near-Sensor Computing for Damage Detection in Structural Health Monitoring," Future Internet, MDPI, vol. 13(8), pages 1-22, August.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:8:p:219-:d:619875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/8/219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/8/219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaushik Roy & Akhilesh Jaiswal & Priyadarshini Panda, 2019. "Towards spike-based machine intelligence with neuromorphic computing," Nature, Nature, vol. 575(7784), pages 607-617, November.
    2. Guillaume Bellec & Franz Scherr & Anand Subramoney & Elias Hajek & Darjan Salaj & Robert Legenstein & Wolfgang Maass, 2020. "A solution to the learning dilemma for recurrent networks of spiking neurons," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Saia & Salvatore Carta & Olaf Bergmann, 2021. "Wireless Internet, Multimedia, and Artificial Intelligence: New Applications and Infrastructures," Future Internet, MDPI, vol. 13(9), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Dong Gue Roe & Dong Hae Ho & Yoon Young Choi & Young Jin Choi & Seongchan Kim & Sae Byeok Jo & Moon Sung Kang & Jong-Hyun Ahn & Jeong Ho Cho, 2023. "Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Jiaqi Liu & Jiangdong Gong & Huanhuan Wei & Yameng Li & Haixia Wu & Chengpeng Jiang & Yuelong Li & Wentao Xu, 2022. "A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Barbara Feulner & Matthew G. Perich & Raeed H. Chowdhury & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2022. "Small, correlated changes in synaptic connectivity may facilitate rapid motor learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Wang, Huan & Li, Yan-Fu, 2023. "Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Takuya Isomura & Kiyoshi Kotani & Yasuhiko Jimbo & Karl J. Friston, 2023. "Experimental validation of the free-energy principle with in vitro neural networks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Filippo Moro & Emmanuel Hardy & Bruno Fain & Thomas Dalgaty & Paul Clémençon & Alessio Prà & Eduardo Esmanhotto & Niccolò Castellani & François Blard & François Gardien & Thomas Mesquida & François Ru, 2022. "Neuromorphic object localization using resistive memories and ultrasonic transducers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Melika Payvand & Filippo Moro & Kumiko Nomura & Thomas Dalgaty & Elisa Vianello & Yoshifumi Nishi & Giacomo Indiveri, 2022. "Self-organization of an inhomogeneous memristive hardware for sequence learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Chenhao Wang & Xinyi Xu & Xiaodong Pi & Mark D. Butala & Wen Huang & Lei Yin & Wenbing Peng & Munir Ali & Srikrishna Chanakya Bodepudi & Xvsheng Qiao & Yang Xu & Wei Sun & Deren Yang, 2022. "Neuromorphic device based on silicon nanosheets," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Zhou, Qian & Qi, Saibing & Ren, Cong, 2021. "Gene essentiality prediction based on chaos game representation and spiking neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    17. Rong Zhao & Zheyu Yang & Hao Zheng & Yujie Wu & Faqiang Liu & Zhenzhi Wu & Lukai Li & Feng Chen & Seng Song & Jun Zhu & Wenli Zhang & Haoyu Huang & Mingkun Xu & Kaifeng Sheng & Qianbo Yin & Jing Pei &, 2022. "A framework for the general design and computation of hybrid neural networks," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Michalis Pagkalos & Spyridon Chavlis & Panayiota Poirazi, 2023. "Introducing the Dendrify framework for incorporating dendrites to spiking neural networks," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Hanle Zheng & Zhong Zheng & Rui Hu & Bo Xiao & Yujie Wu & Fangwen Yu & Xue Liu & Guoqi Li & Lei Deng, 2024. "Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:8:p:219-:d:619875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.