IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58626-4.html
   My bibliography  Save this article

Integrating physical units into high-performance AI-driven scientific computing

Author

Listed:
  • Chaoming Wang

    (Peking University)

  • Sichao He

    (Peking University)

  • Shouwei Luo

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Yuxiang Huan

    (Guangdong Institute of Intelligence Science and Technology)

  • Si Wu

    (Peking University
    Peking University
    Guangdong Institute of Intelligence Science and Technology
    Peking University)

Abstract

Artificial intelligence is revolutionizing scientific research across various disciplines. The foundation of scientific research lies in rigorous scientific computing based on standardized physical units. However, current mainstream high-performance numerical computing libraries for artificial intelligence generally lack native support for physical units, significantly impeding the integration of artificial intelligence methodologies into scientific research. To fill this gap, we introduce SAIUnit, a system designed to seamlessly integrate physical units into scientific artificial intelligence libraries, with a focus on compatibility with JAX. SAIUnit offers a comprehensive library of over 2000 physical units and 500 unit-aware mathematical functions. It is fully compatible with JAX transformations, allowing for automatic differentiation, just-in-time compilation, vectorization, and parallelization while maintaining unit consistency. We demonstrate SAIUnit’s applicability and effectiveness across diverse artificial intelligence-driven scientific computing domains, including numerical integration, brain modeling, and physics-informed neural networks. Our results show that by confining unit checking to the compilation phase, SAIUnit enhances the accuracy, reliability, interpretability, and collaborative potential of scientific computations without compromising runtime performance. By bridging the gap between abstract computing frameworks and physical units, SAIUnit represents a crucial step towards more robust and physically grounded artificial intelligence-driven scientific computing.

Suggested Citation

  • Chaoming Wang & Sichao He & Shouwei Luo & Yuxiang Huan & Si Wu, 2025. "Integrating physical units into high-performance AI-driven scientific computing," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58626-4
    DOI: 10.1038/s41467-025-58626-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58626-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58626-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 636(8042), pages 4-4, December.
    2. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    3. Kaushik Roy & Akhilesh Jaiswal & Priyadarshini Panda, 2019. "Towards spike-based machine intelligence with neuromorphic computing," Nature, Nature, vol. 575(7784), pages 607-617, November.
    4. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 630(8016), pages 493-500, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    2. William J. Nicolas & Anna Shiriaeva & Michael W. Martynowycz & Angus C. Grey & Yasmeen N. Ruma & Paul J. Donaldson & Tamir Gonen, 2025. "Structure of the lens MP20 mediated adhesive junction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Gašper Šolinc & Marija Srnko & Franci Merzel & Ana Crnković & Mirijam Kozorog & Marjetka Podobnik & Gregor Anderluh, 2025. "Cryo-EM structures of a protein pore reveal a cluster of cholesterol molecules and diverse roles of membrane lipids," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Tae-Kyeong Jeong & R. Ciaran MacKenzie Frater & Jongha Yoon & Anja Groth & Ji-Joon Song, 2025. "CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    5. Timothy Atkinson & Thomas D. Barrett & Scott Cameron & Bora Guloglu & Matthew Greenig & Charlie B. Tan & Louis Robinson & Alex Graves & Liviu Copoiu & Alexandre Laterre, 2025. "Protein sequence modelling with Bayesian flow networks," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    6. Juan G. Carvajal-Patiño & Vincent Mallet & David Becerra & Luis Fernando Niño Vasquez & Carlos Oliver & Jérôme Waldispühl, 2025. "RNAmigos2: accelerated structure-based RNA virtual screening with deep graph learning," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. James Hodgkinson-Bean & Rafael Ayala & Nadishka Jayawardena & Georgia L. Rutter & Bridget N. J. Watson & David Mayo-Muñoz & James Keal & Peter C. Fineran & Matthias Wolf & Mihnea Bostina, 2025. "Global structural survey of the flagellotropic myophage φTE infecting agricultural pathogen Pectobacterium atrosepticum," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    8. Wenkai Chen & Xueying Xu & Zhidan Zeng & Mingsen Zhou & Jiying Chen & Guangfu Hu & Anfu Shen & Dapeng Li & Liu Xiangjiang, 2025. "The role of pyruvate dehydrogenase in the lifespan determination of daphnids," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. John R. Horton & Meigen Yu & Jujun Zhou & Melody Tran & Rithvi R. Anakal & Yue Lu & Robert M. Blumenthal & Xiaotian Zhang & Yun Huang & Xing Zhang & Xiaodong Cheng, 2025. "Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    10. Wen Yang & Man Feng & Kuohai Yu & Jie Cao & Guangxian Cui & Yumei Zhang & Huiru Peng & Yingyin Yao & Zhaorong Hu & Zhongfu Ni & Feng Qin & Fuminori Takahashi & Qixin Sun & Mingming Xin, 2025. "The TaCLE24b peptide signaling cascade modulates lateral root development and drought tolerance in wheat," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Na Jiang & Hekun Yang & Yi Lei & Weida Qin & Huifang Xiong & Kuan Chen & Kunrong Mei & Gongyu Li & Xin Mu & Ruibing Chen, 2025. "Characterization of dsRNA binding proteins through solubility analysis identifies ZNF385A as a dsRNA homeostasis regulator," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    12. Bing Wang & Nelly Said & Tarek Hilal & Mark Finazzo & Markus C. Wahl & Irina Artsimovitch, 2025. "Nucleotide-induced hyper-oligomerization inactivates transcription termination factor ρ," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    13. Xiaofei Jiao & Zhongyang Liang & Jiwei Li & Long Bai & Jun Xu & Yidan Liu & Lin-Yu Lu, 2025. "Aberrant activation of chromosome asynapsis checkpoint triggers oocyte elimination," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    14. Yu Wang & Sen Wang & Yuanyuan Chen & Chunlan Xie & Haibo Xu & Yunhua Lin & Ranxun Lin & Wanlin Zeng & Xuan Chen & Xinyi Nie & Shihua Wang, 2025. "The role of Npt1 in regulating antifungal protein activity in filamentous fungi," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    15. Samantha F. Sedor & Sichen Shao, 2025. "Mechanism of ASF1 engagement by CDAN1," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Ian Y. Yen & Gregory B. Whitfield & John L. Rubinstein & Lori L. Burrows & Yves V. Brun & P. Lynne Howell, 2025. "Conformational changes in the motor ATPase CpaF facilitate a rotary mechanism of Tad pilus assembly," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    17. Qi Gao & Florian W. Hofer & Sebastian Filbeck & Bram J. A. Vermeulen & Martin Würtz & Annett Neuner & Charlotte Kaplan & Maja Zezlina & Cornelia Sala & Hyesu Shin & Oliver J. Gruss & Elmar Schiebel & , 2025. "Structural mechanisms for centrosomal recruitment and organization of the microtubule nucleator γ-TuRC," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    18. Tongqing Li & Steven E. Stayrook & Wenxue Li & Yueyue Wang & Hengyi Li & Jianan Zhang & Yansheng Liu & Daryl E. Klein, 2025. "Crystal structure of Isthmin-1 and reassessment of its functional role in pre-adipocyte signaling," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    19. Tianyang Zhao & Kuipei Jin & Xiaodong Wang & Xiong Su & Youjun Wang & Mingming Gao & Wen Luo & Hongyuan Yang & Zhongzhou Yang, 2025. "GPAT4 sustains endoplasmic reticulum homeostasis in endocardial cells and safeguards heart development," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    20. Ruifang Ma & Bowen Du & Chen Shi & Lei Wang & Fuxing Zeng & Jie Han & Huiyi Guan & Yong Wang & Kaige Yan, 2025. "Molecular basis for the regulation of human phosphorylase kinase by phosphorylation and Ca2+," Nature Communications, Nature, vol. 16(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58626-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.