IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics096007792400225x.html
   My bibliography  Save this article

Reservoir computing-based advance warning of extreme events

Author

Listed:
  • Wang, Tao
  • Zhou, Hanxu
  • Fang, Qing
  • Han, Yanan
  • Guo, Xingxing
  • Zhang, Yahui
  • Qian, Chao
  • Chen, Hongsheng
  • Barland, Stéphane
  • Xiang, Shuiying
  • Lippi, Gian Luca

Abstract

Physics-based computing exploits nonlinear or disorder-induced complexity, for example, to realize energy-efficient and high-throughput computing tasks. A particularly difficult but useful task is the prediction of extreme events that can occur in a wide range of complex systems. We prepare an experiment based on a microcavity semiconductor laser that produces statistically rare extreme events resulting from the interplay of deterministic nonlinear dynamics and spontaneous emission noise. We then evaluate the performance of three reservoir computing training approaches in predicting the occurrence of extreme events. We show that Dual Training Reservoir Computing (which in turn can be implemented with fast semiconductor laser dynamics) can provide meaningful early warnings up to 15 times the typical linear correlation time of the dynamics.

Suggested Citation

  • Wang, Tao & Zhou, Hanxu & Fang, Qing & Han, Yanan & Guo, Xingxing & Zhang, Yahui & Qian, Chao & Chen, Hongsheng & Barland, Stéphane & Xiang, Shuiying & Lippi, Gian Luca, 2024. "Reservoir computing-based advance warning of extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s096007792400225x
    DOI: 10.1016/j.chaos.2024.114673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792400225X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Brunner & Miguel C. Soriano & Claudio R. Mirasso & Ingo Fischer, 2013. "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    2. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 619(7970), pages 533-538, July.
    3. Yuchen Zhang & Mingsheng Long & Kaiyuan Chen & Lanxiang Xing & Ronghua Jin & Michael I. Jordan & Jianmin Wang, 2023. "Skilful nowcasting of extreme precipitation with NowcastNet," Nature, Nature, vol. 619(7970), pages 526-532, July.
    4. David Chandler, 2005. "Interfaces and the driving force of hydrophobic assembly," Nature, Nature, vol. 437(7059), pages 640-647, September.
    5. L. Appeltant & M.C. Soriano & G. Van der Sande & J. Danckaert & S. Massar & J. Dambre & B. Schrauwen & C.R. Mirasso & I. Fischer, 2011. "Information processing using a single dynamical node as complex system," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    6. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Author Correction: Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 621(7980), pages 45-45, September.
    7. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Qian & Ido Kaminer & Hongsheng Chen, 2025. "A guidance to intelligent metamaterials and metamaterials intelligence," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    2. Cai, Deyu & Mu, Penghua & Huang, Yu & Zhou, Pei & Li, Nianqiang, 2024. "A reinforced reservoir computer aided by an external asymmetric dual-path-filtering cavity laser," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Jinhua & Hu, Zechun & Wang, Songpo & Mujeeb, Asad & Yang, Pengwei, 2024. "Windformer: A novel 4D high-resolution system for multi-step wind speed vector forecasting based on temporal shifted window multi-head self-attention," Energy, Elsevier, vol. 310(C).
    2. Mattia Cavaiola & Federico Cassola & Davide Sacchetti & Francesco Ferrari & Andrea Mazzino, 2024. "Hybrid AI-enhanced lightning flash prediction in the medium-range forecast horizon," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Markus Reichstein & Vitus Benson & Jan Blunk & Gustau Camps-Valls & Felix Creutzig & Carina J. Fearnley & Boran Han & Kai Kornhuber & Nasim Rahaman & Bernhard Schölkopf & José María Tárraga & Ricardo , 2025. "Early warning of complex climate risk with integrated artificial intelligence," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    5. Bai, Huimin & Gong, Zhiqiang & Li, Li & Ma, Junjie & Dogar, Muhammad Mubashar, 2025. "Vegetation coverage variability and its driving factors in the semi-arid to semi-humid transition zone of North China," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    6. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    7. Cai, Deyu & Mu, Penghua & Huang, Yu & Zhou, Pei & Li, Nianqiang, 2024. "A reinforced reservoir computer aided by an external asymmetric dual-path-filtering cavity laser," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    8. Song Chen & Jiaxu Liu & Pengkai Wang & Chao Xu & Shengze Cai & Jian Chu, 2024. "Accelerated optimization in deep learning with a proportional-integral-derivative controller," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Yuchen Cai & Jia Yang & Yutang Hou & Feng Wang & Lei Yin & Shuhui Li & Yanrong Wang & Tao Yan & Shan Yan & Xueying Zhan & Jun He & Zhenxing Wang, 2025. "8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    12. Huaisheng Tu & Haotian Liu & Tuqiang Pan & Wuping Xie & Zihao Ma & Fan Zhang & Pengbai Xu & Leiming Wu & Ou Xu & Yi Xu & Yuwen Qin, 2025. "Deep empirical neural network for optical phase retrieval over a scattering medium," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    13. Li Hu Wang & Xue Mei Liu & Yang Liu & Hai Rui Li & Jia QI Liu & Li Bo Yang, 2023. "Emergency entity relationship extraction for water diversion project based on pre-trained model and multi-featured graph convolutional network," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-18, October.
    14. Dongliang Wang & Yikun Nie & Gaolei Hu & Hon Ki Tsang & Chaoran Huang, 2024. "Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Lei Chen & Xiaohui Zhong & Hao Li & Jie Wu & Bo Lu & Deliang Chen & Shang-Ping Xie & Libo Wu & Qingchen Chao & Chensen Lin & Zixin Hu & Yuan Qi, 2024. "A machine learning model that outperforms conventional global subseasonal forecast models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Yingzhe Cui & Ruohan Wu & Xiang Zhang & Ziqi Zhu & Bo Liu & Jun Shi & Junshi Chen & Hailong Liu & Shenghui Zhou & Liang Su & Zhao Jing & Hong An & Lixin Wu, 2025. "Forecasting the eddying ocean with a deep neural network," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Zhao, Yirui & Gan, Wei & Yan, Mingyu & Wen, Jinyu & Zhou, Yue, 2025. "A scalable stochastic scheme for identifying critical substations considering the epistemic uncertainty of contingency in power systems," Applied Energy, Elsevier, vol. 381(C).
    18. Khan, Taimoor & Choi, Chang, 2025. "Attention enhanced dual stream network with advanced feature selection for power forecasting," Applied Energy, Elsevier, vol. 377(PC).
    19. Hang Gao & Chun Shen & Xuesong Wang & Pak-Wai Chan & Kai-Kwong Hon & Jianbing Li, 2024. "Interpretable semi-supervised clustering enables universal detection and intensity assessment of diverse aviation hazardous winds," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Gavin Shaddick & David Topping & Tristram C. Hales & Usama Kadri & Joanne Patterson & John Pickett & Ioan Petri & Stuart Taylor & Peiyuan Li & Ashish Sharma & Venkat Venkatkrishnan & Abhinav Wadhwa & , 2025. "Data Science and AI for Sustainable Futures: Opportunities and Challenges," Sustainability, MDPI, vol. 17(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s096007792400225x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.