IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011980.html
   My bibliography  Save this article

Topology and dynamics of higher-order multiplex networks

Author

Listed:
  • Krishnagopal, Sanjukta
  • Bianconi, Ginestra

Abstract

Higher-order networks are gaining significant scientific attention due to their ability to encode the many-body interactions present in complex systems. However, higher-order networks have the limitation that they only capture many-body interactions of the same type. To address this limitation, we present a mathematical framework that determines the topology of higher-order multiplex networks and illustrates the interplay between their topology and dynamics. Specifically, we examine the diffusion of topological signals associated not only to the nodes but also to the links and to the higher-dimensional simplices of multiplex simplicial complexes. We leverage on the ubiquitous presence of the overlap of the simplices to couple the dynamics among multiplex layers, introducing a definition of multiplex Hodge Laplacians and Dirac operators. We show that the spectral properties of these operators determine higher-order diffusion on higher-order multiplex networks and encode their multiplex Betti numbers. Our numerical investigation of the spectral properties of synthetic and real (connectome, microbiome) multiplex simplicial complexes indicates that the coupling between the layers can either speed up or slow down the higher-order diffusion of topological signals. This mathematical framework is very general and can be applied to study generic higher-order systems with interactions of multiple types. In particular, these results might find applications in brain networks which are understood to be both multilayer and higher-order.

Suggested Citation

  • Krishnagopal, Sanjukta & Bianconi, Ginestra, 2023. "Topology and dynamics of higher-order multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011980
    DOI: 10.1016/j.chaos.2023.114296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.