IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923009189.html
   My bibliography  Save this article

Neuromorphic behaviors in a neuron circuit based on current-controlled Chua Corsage Memristor

Author

Listed:
  • Li, Zhijun
  • Chen, Kaijie

Abstract

Locally active memristor is considered as an ideal device for building neuron circuits. In this study, a novel current-controlled Chua Corsage Memristor (CCM), which supplements the existing CCM family, is proposed to explore its unknown neuromorphic dynamics. The non-volatility of the current-controlled CCM is verified by its power-off plot and the locally active domain is identified by its DC I-V plot. A third-order neuron circuit is developed by embedding the current-controlled CCM into a passive LC network. The edge of chaos domain of the neuron circuit is identified only by real parts of the eigenvalues of the system's Jacobi matrix. The resulting circuit is capable of sensing external current stimuli and producing neuromorphic behaviors when it is poised on or near the edge of chaos, making it more bionic. The neuromorphic behaviors in four different parameter intervals are revealed in detail, and the generation mechanisms are analyzed based on the theories of Hopf bifurcation and edge of chaos. Due to its simple structure and complex neuromorphic behaviors, it is expected that the neuron circuit may help to further study memristor-based neuron models.

Suggested Citation

  • Li, Zhijun & Chen, Kaijie, 2023. "Neuromorphic behaviors in a neuron circuit based on current-controlled Chua Corsage Memristor," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009189
    DOI: 10.1016/j.chaos.2023.114017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Shengli & Xu, Ying & Wang, Chunni & Jin, Wuyin & Hobiny, Aatef & Ma, Jun, 2017. "Collective response, synapse coupling and field coupling in neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 120-127.
    2. Zubaer I. Mannan & Changju Yang & Shyam P. Adhikari & Hyongsuk Kim, 2018. "Exact Analysis and Physical Realization of the 6-Lobe Chua Corsage Memristor," Complexity, Hindawi, vol. 2018, pages 1-21, November.
    3. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    4. Ying, Jiajie & Liang, Yan & Wang, Junlan & Dong, Yujiao & Wang, Guangyi & Gu, Meiyuan, 2021. "A tristable locally-active memristor and its complex dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Can Li & Daniel Belkin & Yunning Li & Peng Yan & Miao Hu & Ning Ge & Hao Jiang & Eric Montgomery & Peng Lin & Zhongrui Wang & Wenhao Song & John Paul Strachan & Mark Barnell & Qing Wu & R. Stanley Wil, 2018. "Efficient and self-adaptive in-situ learning in multilayer memristor neural networks," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    6. Zhang, Ge & Wang, Chunni & Alzahrani, Faris & Wu, Fuqiang & An, Xinlei, 2018. "Investigation of dynamical behaviors of neurons driven by memristive synapse," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 15-24.
    7. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Xiaojian Zhu & Qiwen Wang & Wei D. Lu, 2020. "Memristor networks for real-time neural activity analysis," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    9. Ding, Dawei & Chen, Xiaoyu & Yang, Zongli & Hu, Yongbing & Wang, Mouyuan & Zhang, Hongwei & Zhang, Xu, 2022. "Coexisting multiple firing behaviors of fractional-order memristor-coupled HR neuron considering synaptic crosstalk and its ARM-based implementation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Guodong & Xue, Yuxiong & Li, Yuwei & Ma, Jun, 2019. "Field coupling benefits signal exchange between Colpitts systems," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 45-54.
    2. Ding, Dawei & Chen, Xiaoyu & Yang, Zongli & Hu, Yongbing & Wang, Mouyuan & Zhang, Hongwei & Zhang, Xu, 2022. "Coexisting multiple firing behaviors of fractional-order memristor-coupled HR neuron considering synaptic crosstalk and its ARM-based implementation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Ying, Jiajie & Min, Fuhong & Wang, Guangyi, 2023. "Neuromorphic behaviors of VO2 memristor-based neurons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    4. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Zhang, Yin & Wu, Fuqiang & Wang, Chunni & Ma, Jun, 2019. "Stability of target waves in excitable media under electromagnetic induction and radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 519-530.
    6. Ma, Jun & Xu, Wenkang & Zhou, Ping & Zhang, Ge, 2019. "Synchronization between memristive and initial-dependent oscillators driven by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    7. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    9. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    11. Ying, Jiajie & Liang, Yan & Wang, Junlan & Dong, Yujiao & Wang, Guangyi & Gu, Meiyuan, 2021. "A tristable locally-active memristor and its complex dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    12. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    13. Rajgopal, Karthikeyan & Karthikeyan, Anitha & V.R., Varun Raj, 2022. "Dynamical behavior of pancreatic β cells with memductance flux coupling: Considering nodal properties and wave propagation in the excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    14. Wang, Zhen & Parastesh, Fatemeh & Rajagopal, Karthikeyan & Hamarash, Ibrahim Ismael & Hussain, Iqtadar, 2020. "Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    16. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    17. Nazarimehr, Fahimeh & Panahi, Shirin & Jalili, Mahdi & Perc, Matjaž & Jafari, Sajad & Ferčec, Brigita, 2020. "Multivariable coupling and synchronization in complex networks," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    18. Li, Xing & Zou, Jianxun & Feng, Zhe & Wu, Zuheng & Xu, Zuyu & Yang, Fei & Zhu, Yunlai & Dai, Yuehua, 2023. "Thermal design engineering for improving the variation of memristor threshold," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    20. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.