IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59589-2.html
   My bibliography  Save this article

Flexible self-rectifying synapse array for energy-efficient edge multiplication in electrocardiogram diagnosis

Author

Listed:
  • Younghyun Lee

    (Yuseong-gu)

  • Hakseung Rhee

    (Yuseong-gu)

  • Geunyoung Kim

    (Yuseong-gu)

  • Woon Hyung Cheong

    (Yuseong-gu)

  • Do Hoon Kim

    (Yuseong-gu)

  • Hanchan Song

    (Yuseong-gu)

  • Sooyeon Narie Kay

    (Yuseong-gu)

  • Jongwon Lee

    (Yuseong-gu)

  • Kyung Min Kim

    (Yuseong-gu)

Abstract

Edge computing devices, which generate, collect, process, and analyze data near the source, enhance the data processing efficiency and improve the responsiveness in real-time applications or unstable network environments. To be utilized in wearable and skin-attached electronics, these edge devices must be compact, energy efficient for use in low-power environments, and fabricable on soft substrates. Here, we propose a flexible memristive dot product engine (f-MDPE) designed for edge use and demonstrate its feasibility in a real-time electrocardiogram (ECG) monitoring system. The f-MDPE comprises a 32 × 32 crossbar array embodying a low-temperature processed self-rectifying charge trap memristor on a flexible polyimide substrate and exhibits high uniformity and robust electrical and mechanical stability even under 5-mm bending conditions. Then, we design a neural network training algorithm through hardware-aware approaches and conduct real-time edge ECG diagnosis. This approach achieved an ECG classification accuracy of 93.5%, while consuming only 0.3% of the energy compared to digital approaches, highlighting the strong potential of this approach for emerging edge neuromorphic hardware.

Suggested Citation

  • Younghyun Lee & Hakseung Rhee & Geunyoung Kim & Woon Hyung Cheong & Do Hoon Kim & Hanchan Song & Sooyeon Narie Kay & Jongwon Lee & Kyung Min Kim, 2025. "Flexible self-rectifying synapse array for energy-efficient edge multiplication in electrocardiogram diagnosis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59589-2
    DOI: 10.1038/s41467-025-59589-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59589-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59589-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Ambrogio & P. Narayanan & A. Okazaki & A. Fasoli & C. Mackin & K. Hosokawa & A. Nomura & T. Yasuda & A. Chen & A. Friz & M. Ishii & J. Luquin & Y. Kohda & N. Saulnier & K. Brew & S. Choi & I. Ok & , 2023. "An analog-AI chip for energy-efficient speech recognition and transcription," Nature, Nature, vol. 620(7975), pages 768-775, August.
    2. Can Li & Daniel Belkin & Yunning Li & Peng Yan & Miao Hu & Ning Ge & Hao Jiang & Eric Montgomery & Peng Lin & Zhongrui Wang & Wenhao Song & John Paul Strachan & Mark Barnell & Qing Wu & R. Stanley Wil, 2018. "Efficient and self-adaptive in-situ learning in multilayer memristor neural networks," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Linfeng Sun & Yishu Zhang & Gyeongtak Han & Geunwoo Hwang & Jinbao Jiang & Bomin Joo & Kenji Watanabe & Takashi Taniguchi & Young-Min Kim & Woo Jong Yu & Bai-Sun Kong & Rong Zhao & Heejun Yang, 2019. "Self-selective van der Waals heterostructures for large scale memory array," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Peng Yao & Huaqiang Wu & Bin Gao & Jianshi Tang & Qingtian Zhang & Wenqiang Zhang & J. Joshua Yang & He Qian, 2020. "Fully hardware-implemented memristor convolutional neural network," Nature, Nature, vol. 577(7792), pages 641-646, January.
    6. Min-gu Kim & Devin K. Brown & Oliver Brand, 2020. "Nanofabrication for all-soft and high-density electronic devices based on liquid metal," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. H. Kim & M. R. Mahmoodi & H. Nili & D. B. Strukov, 2021. "4K-memristor analog-grade passive crossbar circuit," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Jung Ho Yoon & Zhongrui Wang & Kyung Min Kim & Huaqiang Wu & Vignesh Ravichandran & Qiangfei Xia & Cheol Seong Hwang & J. Joshua Yang, 2018. "An artificial nociceptor based on a diffusive memristor," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruihua Yu & Ze Wang & Qi Liu & Bin Gao & Zhenqi Hao & Tao Guo & Sanchuan Ding & Junyang Zhang & Qi Qin & Dong Wu & Peng Yao & Qingtian Zhang & Jianshi Tang & He Qian & Huaqiang Wu, 2025. "A full-stack memristor-based computation-in-memory system with software-hardware co-development," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Jiangang Chen & Zhixing Wen & Fan Yang & Renji Bian & Qirui Zhang & Er Pan & Yuelei Zeng & Xiao Luo & Qing Liu & Liang-Jian Deng & Fucai Liu, 2025. "Refreshable memristor via dynamic allocation of ferro-ionic phase for neural reuse," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    3. Samarth Jain & Sifan Li & Haofei Zheng & Lingqi Li & Xuanyao Fong & Kah-Wee Ang, 2025. "Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Yunping Bai & Yifu Xu & Shifan Chen & Xiaotian Zhu & Shuai Wang & Sirui Huang & Yuhang Song & Yixuan Zheng & Zhihui Liu & Sim Tan & Roberto Morandotti & Sai T. Chu & Brent E. Little & David J. Moss & , 2025. "TOPS-speed complex-valued convolutional accelerator for feature extraction and inference," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Malte J. Rasch & Fabio Carta & Omobayode Fagbohungbe & Tayfun Gokmen, 2024. "Fast and robust analog in-memory deep neural network training," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Vasileiadis, Nikolaos & Loukas, Panagiotis & Karakolis, Panagiotis & Ioannou-Sougleridis, Vassilios & Normand, Pascal & Ntinas, Vasileios & Fyrigos, Iosif-Angelos & Karafyllidis, Ioannis & Sirakoulis,, 2021. "Multi-level resistance switching and random telegraph noise analysis of nitride based memristors," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Choi, Woo Sik & Kim, Donguk & Yang, Tae Jun & Chae, Inseok & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Electrode-dependent electrical switching characteristics of InGaZnO memristor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Lee, Geun Ho & Kim, Tae-Hyeon & Song, Min Suk & Park, Jinwoo & Kim, Sungjoon & Hong, Kyungho & Kim, Yoon & Park, Byung-Gook & Kim, Hyungjin, 2022. "Effect of weight overlap region on neuromorphic system with memristive synaptic devices," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    13. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    18. Yu, Fei & Kong, Xinxin & Yao, Wei & Zhang, Jin & Cai, Shuo & Lin, Hairong & Jin, Jie, 2024. "Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    19. Ji-Hye Kim & Sooyoung Kim & Hyeonjin Kim & Sanghyuk Wooh & Jiung Cho & Michael D. Dickey & Ju-Hee So & Hyung-Jun Koo, 2022. "Imbibition-induced selective wetting of liquid metal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Alsuwian, Turki & Kousar, Farhana & Rasheed, Umbreen & Imran, Muhammad & Hussain, Fayyaz & Arif Khalil, R.M. & Algadi, Hassan & Batool, Najaf & Khera, Ejaz Ahmad & Kiran, Saira & Ashiq, Muhammad Naeem, 2021. "First principles investigation of physically conductive bridge filament formation of aluminum doped perovskite materials for neuromorphic memristive applications," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59589-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.