IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008554.html
   My bibliography  Save this article

Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks

Author

Listed:
  • Oliveira, José J.

Abstract

For a general n-dimensional nonautonomous and nonlinear differential equation with infinite delay, we give sufficient conditions for its global asymptotic stability. The main stability criterion depends on the size of the delay on the linear part and the dominance of the linear terms over the nonlinear terms. We apply our main result to answer several open problems left by Berezansky et al. (2014). Using the obtained theoretical stability results, we get sufficient conditions for both the global asymptotic and global exponential stability of a bidirectional associative memory neural network model with delays which generalizes models recently studied. Finally, a numerical example is given to illustrate the novelty of our results.

Suggested Citation

  • Oliveira, José J., 2022. "Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008554
    DOI: 10.1016/j.chaos.2022.112676
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chengdai & Meng, Yijie & Cao, Jinde & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "New bifurcation results for fractional BAM neural network with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 31-44.
    2. Aouiti, Chaouki & Ben Gharbia, Imen & Cao, Jinde & Salah M’hamdi, Mohammed & Alsaedi, Ahmed, 2018. "Existence and global exponential stability of pseudo almost periodic solution for neutral delay BAM neural networks with time-varying delay in leakage terms," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 111-127.
    3. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Yuan, Shuai, 2021. "Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. Berezansky, Leonid & Diblík, Josef & Svoboda, Zdeněk & Šmarda, Zdeněk, 2018. "Exponential stability of linear delayed differential systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 474-484.
    6. Maharajan, C. & Raja, R. & Cao, Jinde & Rajchakit, G. & Tu, Zhengwen & Alsaedi, Ahmed, 2018. "LMI-based results on exponential stability of BAM-type neural networks with leakage and both time-varying delays: A non-fragile state estimation approach," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 33-55.
    7. Thoiyab, N. Mohamed & Muruganantham, P. & Zhu, Quanxin & Gunasekaran, Nallappan, 2021. "Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Jie & Li, Hong-Li & Cao, Jinde & Hu, Cheng & Jiang, Haijun, 2023. "State estimation for discrete-time fractional-order neural networks with time-varying delays and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Li, Xuemei & Liu, Xinge & Wang, Fengxian, 2023. "Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Changjin & Liu, Zixin & Liao, Maoxin & Li, Peiluan & Xiao, Qimei & Yuan, Shuai, 2021. "Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 471-494.
    2. Xu, Changjin & Liu, Zixin & Yao, Lingyun & Aouiti, Chaouki, 2021. "Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    3. Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
    4. Hou, Hu–Shuang & Zhang, Hua, 2023. "Stability and hopf bifurcation of fractional complex–valued BAM neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    5. Wang, Yangling & Cao, Jinde & Huang, Chengdai, 2022. "Exploration of bifurcation for a fractional-order BAM neural network with n+2 neurons and mixed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Yang, Zhanying & Zhang, Jie & Zhang, Zhihui & Mei, Jun, 2023. "An improved criterion on finite-time stability for fractional-order fuzzy cellular neural networks involving leakage and discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 910-925.
    8. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    9. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    10. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    11. Călin-Adrian Popa & Eva Kaslik, 2020. "Finite-Time Mittag–Leffler Synchronization of Neutral-Type Fractional-Order Neural Networks with Leakage Delay and Time-Varying Delays," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    12. Balasundaram, K. & Raja, R. & Pratap, A. & Chandrasekaran, S., 2019. "Impulsive effects on competitive neural networks with mixed delays: Existence and exponential stability analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 290-302.
    13. Zhang, Guodong & Cao, Jinde, 2023. "New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: Non-reduced order approach," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    14. Shuai Li & Chengdai Huang & Xinyu Song, 2019. "Bifurcation Based-Delay Feedback Control Strategy for a Fractional-Order Two-Prey One-Predator System," Complexity, Hindawi, vol. 2019, pages 1-13, April.
    15. Amine, Saida & Hajri, Youssra & Allali, Karam, 2022. "A delayed fractional-order tumor virotherapy model: Stability and Hopf bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Manickam Iswarya & Ramachandran Raja & Grienggrai Rajchakit & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
    17. Shafiya, M. & Nagamani, G., 2022. "New finite-time passivity criteria for delayed fractional-order neural networks based on Lyapunov function approach," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    18. Xu, Changjin & Liu, Zixin & Pang, Yicheng & Saifullah, Sayed & Inc, Mustafa, 2022. "Oscillatory, crossover behavior and chaos analysis of HIV-1 infection model using piece-wise Atangana–Baleanu fractional operator: Real data approach," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    19. Xu, Changjin & Farman, Muhammad & Akgül, Ali & Nisar, Kottakkaran Sooppy & Ahmad, Aqeel, 2022. "Modeling and analysis fractal order cancer model with effects of chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    20. Ayachi, Moez, 2022. "Dynamics of fuzzy genetic regulatory networks with leakage and mixed delays in doubly-measure pseudo-almost periodic environment," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.