IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922002156.html
   My bibliography  Save this article

New finite-time passivity criteria for delayed fractional-order neural networks based on Lyapunov function approach

Author

Listed:
  • Shafiya, M.
  • Nagamani, G.

Abstract

This paper deals with the problem of finite-time passivity analysis for a class of fractional-order neural networks with constant time delay. Firstly, based on the existing passivity definition, some new concepts namely, finite-time passivity, finite-time input strict passivity, finite-time output strict passivity, and finite-time strict passivity are introduced in terms of Lyapunov function for fractional-order neural networks. In this paper, for the first time, by defining an appropriate controller and by exploiting the introduced definitions, some novel delay-dependent and order-dependent sufficient conditions ensuring the passivity performances are obtained for the addressed system. In addition, the finite-time stability conditions are also presented with an explicit formula for determining the value of setting time for stability. Finally, one numerical example is given to verify the effectiveness of the obtained theoretical results and the simulation results are provided for better understanding of the proposed problem.

Suggested Citation

  • Shafiya, M. & Nagamani, G., 2022. "New finite-time passivity criteria for delayed fractional-order neural networks based on Lyapunov function approach," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002156
    DOI: 10.1016/j.chaos.2022.112005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922002156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hong-Li & Kao, Yonggui & Hu, Cheng & Jiang, Haijun & Jiang, Yao-Lin, 2021. "Robust exponential stability of fractional-order coupled quaternion-valued neural networks with parametric uncertainties and impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Yuan, Shuai, 2021. "Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Liang, Song & Wu, Ranchao & Chen, Liping, 2016. "Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 49-62.
    4. Du, Feifei & Lu, Jun-Guo, 2021. "New approach to finite-time stability for fractional-order BAM neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yan & Zhou, Wei-Jie & Liu, Xiao-Zhen & Wu, Kai-Ning, 2024. "Passivity of fractional reaction-diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    2. Stamova, Ivanka & Stamov, Trayan & Stamov, Gani, 2022. "Lipschitz stability analysis of fractional-order impulsive delayed reaction-diffusion neural network models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
    5. Li, Ruihong & Li, Xingxin & Gan, Qintao & Wu, Huaiqin & Cao, Jinde, 2023. "Finite time event-triggered consensus of variable-order fractional multi-agent systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Yang, Dongsheng & Yu, Yongguang & Wang, Hu & Ren, Guojian & Zhang, Xiaoli, 2024. "Successive lag synchronization of heterogeneous distributed-order coupled neural networks with unbounded delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    4. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    5. Zhang, Shaohua & Wang, Cong & Zhang, Hongli & Ma, Ping & Li, Xinkai, 2022. "Dynamic analysis and bursting oscillation control of fractional-order permanent magnet synchronous motor system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Fei Qi & Yi Chai & Liping Chen & José A. Tenreiro Machado, 2020. "Delay-Dependent and Order-Dependent Guaranteed Cost Control for Uncertain Fractional-Order Delayed Linear Systems," Mathematics, MDPI, vol. 9(1), pages 1-13, December.
    7. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    8. Zhang, Yan-Jie & Liu, Song & Yang, Ran & Tan, Ying-Ying & Li, Xiaoyan, 2019. "Global synchronization of fractional coupled networks with discrete and distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 830-837.
    9. Oliveira, José J., 2022. "Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Amine, Saida & Hajri, Youssra & Allali, Karam, 2022. "A delayed fractional-order tumor virotherapy model: Stability and Hopf bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Xu, Changjin & Liu, Zixin & Pang, Yicheng & Saifullah, Sayed & Inc, Mustafa, 2022. "Oscillatory, crossover behavior and chaos analysis of HIV-1 infection model using piece-wise Atangana–Baleanu fractional operator: Real data approach," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Yang, Dongsheng & Yu, Yongguang & Wang, Hu & Ren, Guojian & Zhang, Xiaoli, 2024. "Successive lag synchronization of heterogeneous distributed-order coupled neural networks with unbounded delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    13. Zheng, Bibo & Wang, Zhanshan, 2022. "Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    14. Li, Hong-Li & Hu, Cheng & Jiang, Yao-Lin & Wang, Zuolei & Teng, Zhidong, 2016. "Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 142-149.
    15. Xu, Changjin & Farman, Muhammad & Akgül, Ali & Nisar, Kottakkaran Sooppy & Ahmad, Aqeel, 2022. "Modeling and analysis fractal order cancer model with effects of chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Fang, Qingxiang & Peng, Jigen, 2018. "Synchronization of fractional-order linear complex networks with directed coupling topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 542-553.
    17. Hou, Yi-You & Lin, Ming-Hung & Saberi-Nik, Hassan & Arya, Yogendra, 2024. "Boundary analysis and energy feedback control of fractional-order extended Malkus–Robbins dynamo system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    18. Yaning Yu & Ziye Zhang, 2022. "State Estimation for Complex-Valued Inertial Neural Networks with Multiple Time Delays," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    19. Yan, Hongyun & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2022. "New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    20. Xu, Changjin & Liu, Zixin & Yao, Lingyun & Aouiti, Chaouki, 2021. "Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays," Applied Mathematics and Computation, Elsevier, vol. 410(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.