IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v326y2018icp33-55.html
   My bibliography  Save this article

LMI-based results on exponential stability of BAM-type neural networks with leakage and both time-varying delays: A non-fragile state estimation approach

Author

Listed:
  • Maharajan, C.
  • Raja, R.
  • Cao, Jinde
  • Rajchakit, G.
  • Tu, Zhengwen
  • Alsaedi, Ahmed

Abstract

In this epigrammatic, the problem of exponential stability for BAM-type neural networks (BAMNNs) with non-fragile state estimator is investigated under time-varying delays. The delays in discrete and distributed terms are assumed to be time-varying, which means that the lower and upper bounds can be derived. Without involving the time-delays or the activation functions, the non-fragile estimators are constructed in terms of simple linear formation and also the implementation of state estimators are uncomplicated. In addition, the non-fragile estimators are reduced the possible implementation errors in neural networks. For consequence, reason of energy saving, the non-fragile estimators are designed with neural networks. By fabricating a suitable LKF (Lyapunov–Krasovskii functional) and enroling some analysis techniques, a novel sufficient conditions for exponential stability of the designated neural networks are derived in terms of Linear Matrix Inequalities (LMIs), which can be easily assessed by MATLAB LMI Control toolbox. Accordingly, the research proposed here, is advanced and less conservative than the previous one exists in the literature. Finally, two numerical examples with simulations and comparative studies are performed to substantiate the advantage and validity of our theoretical findings.

Suggested Citation

  • Maharajan, C. & Raja, R. & Cao, Jinde & Rajchakit, G. & Tu, Zhengwen & Alsaedi, Ahmed, 2018. "LMI-based results on exponential stability of BAM-type neural networks with leakage and both time-varying delays: A non-fragile state estimation approach," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 33-55.
  • Handle: RePEc:eee:apmaco:v:326:y:2018:i:c:p:33-55
    DOI: 10.1016/j.amc.2018.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318300079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raja, R. & Zhu, Quanxin & Senthilraj, S. & Samidurai, R., 2015. "Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1050-1069.
    2. R. Saravanakumar & M. Syed Ali & Jinde Cao & He Huang, 2016. "state estimation of generalised neural networks with interval time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3888-3899, December.
    3. Li, Ruoxia & Cao, Jinde, 2016. "Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term," Applied Mathematics and Computation, Elsevier, vol. 278(C), pages 54-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yang & Sriraman, R. & Samidurai, R., 2020. "Stability and stabilization analysis of nonlinear time-delay systems with randomly occurring controller gain fluctuation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 36-51.
    2. Manickam Iswarya & Ramachandran Raja & Grienggrai Rajchakit & Jinde Cao & Jehad Alzabut & Chuangxia Huang, 2019. "Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method," Mathematics, MDPI, vol. 7(11), pages 1-18, November.
    3. Balasundaram, K. & Raja, R. & Pratap, A. & Chandrasekaran, S., 2019. "Impulsive effects on competitive neural networks with mixed delays: Existence and exponential stability analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 290-302.
    4. Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
    5. Oliveira, José J., 2022. "Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Chen, Dazhao & Zhang, Zhengqiu, 2022. "Finite-time synchronization for delayed BAM neural networks by the approach of the same structural functions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Xu, Changjin & Liao, Maoxin & Li, Peiluan & Yuan, Shuai, 2021. "Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Dianavinnarasi, J. & Raja, R. & Alzabut, J. & Cao, J. & Niezabitowski, M. & Bagdasar, O., 2022. "Application of Caputo–Fabrizio operator to suppress the Aedes Aegypti mosquitoes via Wolbachia: An LMI approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 462-485.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    2. Zhang, Guodong & Zeng, Zhigang, 2018. "Exponential stability for a class of memristive neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 544-554.
    3. Li, Xiaoqing & She, Kun & Zhong, Shouming & Shi, Kaibo & Kang, Wei & Cheng, Jun & Yu, Yongbin, 2018. "Extended robust global exponential stability for uncertain switched memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 271-290.
    4. Li, Liangchen & Xu, Rui & Lin, Jiazhe, 2020. "Lagrange stability for uncertain memristive neural networks with Lévy noise and leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    6. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    7. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Wen, Shiping, 2020. "Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    8. Jiao, Shiyu & Shen, Hao & Wei, Yunliang & Huang, Xia & Wang, Zhen, 2018. "Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 338-350.
    9. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    10. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    11. Shao, Hanyong & Li, Huanhuan & Zhu, Chuanjie, 2017. "New stability results for delayed neural networks," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 324-334.
    12. Maharajan, C. & Raja, R. & Cao, Jinde & Rajchakit, G. & Alsaedi, Ahmed, 2018. "Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 268-282.
    13. Chang, Wenting & Zhu, Song & Li, Jinyu & Sun, Kaili, 2018. "Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 346-362.
    14. Kumar, S. Vimal & Anthoni, S. Marshal & Raja, R., 2019. "Dissipative analysis for aircraft flight control systems with randomly occurring uncertainties via non-fragile sampled-data control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 217-226.
    15. Balasundaram, K. & Raja, R. & Pratap, A. & Chandrasekaran, S., 2019. "Impulsive effects on competitive neural networks with mixed delays: Existence and exponential stability analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 290-302.
    16. Cao, Jinde & Guerrini, Luca & Cheng, Zunshui, 2019. "Stability and Hopf bifurcation of controlled complex networks model with two delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 21-29.
    17. Yuan, Manman & Wang, Weiping & Luo, Xiong & Liu, Linlin & Zhao, Wenbing, 2018. "Finite-time anti-synchronization of memristive stochastic BAM neural networks with probabilistic time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 244-260.
    18. Zhang, Shuai & Yang, Yongqing & Sui, Xin & Xu, Xianyu, 2019. "Finite-time synchronization of memristive neural networks with parameter uncertainties via aperiodically intermittent adjustment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    19. Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Non-fragile state estimation for delayed fractional-order memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 221-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:326:y:2018:i:c:p:33-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.