IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921007955.html
   My bibliography  Save this article

Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties

Author

Listed:
  • Thoiyab, N. Mohamed
  • Muruganantham, P.
  • Zhu, Quanxin
  • Gunasekaran, Nallappan

Abstract

This paper describes a new global robust stability analysis of bidirectional associative memory (BAM) neural networks. Under parameter uncertainty, we find a new upper bound on the norm of the weight matrix of the synaptic connection of time-delayed BAM neural networks. Our new upper bound provides a different kind of sufficient condition for the equilibrium point pertaining to the robust stability of BAM neural networks. Several classes of bounded activation functions are formulated. In addition, appropriate Lyapunov–Krasovskii functional (LKF) candidates are used in the process of deriving the new sufficient conditions for the BAM neural networks that are independent of the time delay parameters. We conduct some comparative studies with numerical examples to demonstrate the advantages of our findings over the stability results in terms of BAM neural network parameters.

Suggested Citation

  • Thoiyab, N. Mohamed & Muruganantham, P. & Zhu, Quanxin & Gunasekaran, Nallappan, 2021. "Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007955
    DOI: 10.1016/j.chaos.2021.111441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Wenping & Zhu, Quanxin, 2021. "Stability analysis of neutral stochastic delay differential equations via the vector Lyapunov function method," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    2. N. Mohamed Thoiyab & P. Muruganantham & Grienggrai Rajchakit & Nallappan Gunasekaran & Bundit Unyong & Usa Humphries & Pramet Kaewmesri & Chee Peng Lim, 2020. "Global Stability Analysis of Neural Networks with Constant Time Delay via Frobenius Norm," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, October.
    3. Singh, Vimal, 2007. "Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 259-263.
    4. Sabri Arik, 2016. "Dynamical analysis of uncertain neural networks with multiple time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(3), pages 730-739, February.
    5. Vadivel, R. & Hammachukiattikul, P. & Gunasekaran, Nallappan & Saravanakumar, R. & Dutta, Hemen, 2021. "Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. M. Syed Ali & N. Gunasekaran & B. Aruna, 2017. "Design of sampled-data control for multiple-time delayed generalised neural networks based on delay-partitioning approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(13), pages 2794-2810, October.
    7. Cao, Jinde & Ho, Daniel W.C., 2005. "A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1317-1329.
    8. M. Syed Ali & M. Usha & Quanxin Zhu & Saravanan Shanmugam, 2020. "Synchronization Analysis for Stochastic T-S Fuzzy Complex Networks with Markovian Jumping Parameters and Mixed Time-Varying Delays via Impulsive Control," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-27, July.
    9. Xiaoyan Liu & Quanxin Zhu, 2020. "Stochastically Globally Exponential Stability of Stochastic Impulsive Differential Systems with Discrete and Infinite Distributed Delays Based on Vector Lyapunov Function," Complexity, Hindawi, vol. 2020, pages 1-16, December.
    10. Senan, Sibel & Arik, Sabri, 2009. "New results for global robust stability of bidirectional associative memory neural networks with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2106-2114.
    11. Hu, Binxin & Song, Qiankun & Zhao, Zhenjiang, 2020. "Robust state estimation for fractional-order complex-valued delayed neural networks with interval parameter uncertainties: LMI approach," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Wei & Zhang, Zhiming & Lam, Hak-Keung & Sun, Fuchun & Wen, Shuhuan, 2023. "LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Wang, Chen & Zhang, Hai & Ye, Renyu & Zhang, Weiwei & Zhang, Hongmei, 2023. "Finite time passivity analysis for Caputo fractional BAM reaction–diffusion delayed neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 424-443.
    3. Oliveira, José J., 2022. "Global stability criteria for nonlinear differential systems with infinite delay and applications to BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aadhithiyan, S. & Raja, R. & Zhu, Q. & Alzabut, J. & Niezabitowski, M. & Lim, C.P., 2021. "Modified projective synchronization of distributive fractional order complex dynamic networks with model uncertainty via adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    2. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    3. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    4. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    5. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    6. Udhayakumar, K. & Rakkiyappan, R. & Li, Xiaodi & Cao, Jinde, 2021. "Mutiple ψ-type stability of fractional-order quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    7. Sun, Meng & Zhuang, Guangming & Xia, Jianwei & Wang, Yanqian & Chen, Guoliang, 2022. "Stochastic admissibility and H∞ output feedback control for singular Markov jump systems under dynamic measurement output event-triggered strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.
    9. Yang, Wei & Cui, Guozeng & Ma, Qian & Ma, Jiali & Tao, Chongben, 2022. "Finite-time adaptive event-triggered command filtered backstepping control for a QUAV," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    10. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    11. R. Sakthivel & R. Raja & S. M. Anthoni, 2013. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 251-273, July.
    12. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    13. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    14. Huan, Mingchen & Li, Chuandong, 2022. "Stability analysis of state-dependent impulsive systems via a new two-sided looped functional," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    16. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    17. Xiangshan Kong & Qilong Sun & Haitao Li, 2022. "Survey on Mathematical Models and Methods of Complex Logical Dynamical Systems," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    18. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    19. Singh, Vimal, 2006. "Simplified LMI condition for global asymptotic stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 470-473.
    20. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.