IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics096007792100566x.html
   My bibliography  Save this article

Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme

Author

Listed:
  • Vadivel, R.
  • Hammachukiattikul, P.
  • Gunasekaran, Nallappan
  • Saravanakumar, R.
  • Dutta, Hemen

Abstract

This article addresses the investigation of strict dissipativity synchronization for a class of static neural networks under an event-triggered scheme. An event-triggered scheme is recommended, it can upgrade the exhibition of system dynamics and diminishes the network communication burden at the same time. Firstly, an appropriate Lyapunov-Krasovskii functional (LKF) with double and triple integral terms with the details on both lower and upper bounds of the delay is completely designed. Secondly, under the single and double Auxillary function-based integral inequalities (SAFBII and DAFBII, respectively) and generalized free weight matrix approach, a new class of delay-dependent adequate condition is proposed, so that the error system is (Q,S,R)−γ− strict dissipative. A resilient distributed event-triggered control scheme is developed by this criterion in terms of linear matrix inequalities (LMIs). At last, simulation examples are provided to demonstrate the performance of the derived results.

Suggested Citation

  • Vadivel, R. & Hammachukiattikul, P. & Gunasekaran, Nallappan & Saravanakumar, R. & Dutta, Hemen, 2021. "Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s096007792100566x
    DOI: 10.1016/j.chaos.2021.111212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100566X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    2. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.
    3. Zeng, Hong-Bing & Zhai, Zheng-Liang & He, Yong & Teo, Kok-Lay & Wang, Wei, 2020. "New insights on stability of sampled-data systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    4. Hongqian Lu & Chaoqun Guo & Yue Hu & Wuneng Zhou & Shihao Yan, 2020. "Improved Distributed Event-Triggered Control for Networked Control System under Random Cyberattacks via Bessel–Legendre Inequalities," Complexity, Hindawi, vol. 2020, pages 1-14, March.
    5. Ma, Jun & Mi, Lv & Zhou, Ping & Xu, Ying & Hayat, Tasawar, 2017. "Phase synchronization between two neurons induced by coupling of electromagnetic field," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 321-328.
    6. repec:taf:tsysxx:v:48:y:2017:i:6:p:1226-1241 is not listed on IDEAS
    7. Jessica A. Cardin & Marie Carlén & Konstantinos Meletis & Ulf Knoblich & Feng Zhang & Karl Deisseroth & Li-Huei Tsai & Christopher I. Moore, 2009. "Driving fast-spiking cells induces gamma rhythm and controls sensory responses," Nature, Nature, vol. 459(7247), pages 663-667, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Runan & Xu, Shengyuan, 2023. "Observer-based sliding mode synchronization control of complex-valued neural networks with inertial term and mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    2. Sang, Hong & Zhao, Ying & Wang, Peng & Wang, Yuzhong & Yu, Shuanghe & Dimirovski, Georgi M., 2023. "Finite-time peak-to-peak analysis for switched generalized neural networks comprised of finite-time unstable subnetworks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Md Sayeed Anwar & Dibakar Ghosh & Nikita Frolov, 2021. "Relay Synchronization in a Weighted Triplex Network," Mathematics, MDPI, vol. 9(17), pages 1-10, September.
    4. Yuan Zhao & Xiaoyu Zhao & Shihua Fu & Jianwei Xia, 2022. "Robust Output Tracking of Boolean Control Networks over Finite Time," Mathematics, MDPI, vol. 10(21), pages 1-15, November.
    5. Luo, Mei & Wang, JinRong & Meng, Deyuan, 2023. "Stochastic convergence problems on switching networks: An event-triggered method," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    6. Karnan, A. & Nagamani, G., 2023. "Event-triggered extended dissipative synchronization for delayed neural networks with random uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Sun, Meng & Zhuang, Guangming & Xia, Jianwei & Wang, Yanqian & Chen, Guoliang, 2022. "Stochastic admissibility and H∞ output feedback control for singular Markov jump systems under dynamic measurement output event-triggered strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Thoiyab, N. Mohamed & Muruganantham, P. & Zhu, Quanxin & Gunasekaran, Nallappan, 2021. "Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Yang, Wei & Cui, Guozeng & Ma, Qian & Ma, Jiali & Tao, Chongben, 2022. "Finite-time adaptive event-triggered command filtered backstepping control for a QUAV," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    10. Saravanan Shanmugam & Rajarathinam Vadivel & Nallappan Gunasekaran, 2023. "Finite-Time Synchronization of Quantized Markovian-Jump Time-Varying Delayed Neural Networks via an Event-Triggered Control Scheme under Actuator Saturation," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    11. Saravanakumar, Ramasamy & Datta, Rupak & Cao, Yang, 2022. "New insights on fuzzy sampled-data stabilization of delayed nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    12. Liu, Haoliang & Zhang, Taixiang & Li, Xiaodi, 2021. "Event-triggered control for nonlinear systems with impulse effects," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Qishui & Han, Sheng & Shi, Kaibo & Zhong, Shouming & Cai, Xiao & Kwon, Oh-Min, 2022. "Distributed secure sampled-data control for distributed generators and energy storage systems in microgrids under abnormal deception attacks," Applied Energy, Elsevier, vol. 326(C).
    2. Wang, Xin & Su, Housheng, 2019. "Consensus of hybrid multi-agent systems by event-triggered/self-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 490-501.
    3. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    4. Li, Xiaoqing & She, Kun & Zhong, Shouming & Shi, Kaibo & Kang, Wei & Cheng, Jun & Yu, Yongbin, 2018. "Extended robust global exponential stability for uncertain switched memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 271-290.
    5. Hironobu Osaki & Moeko Kanaya & Yoshifumi Ueta & Mariko Miyata, 2022. "Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    7. Feng, Zongying & Shao, Hanyong & Shao, Lin, 2020. "Further results on event-triggered H∞ networked control for neural networks with stochastic cyber-attacks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    8. Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    9. Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
    10. Kwon, W. & Koo, Baeyoung & Lee, S.M., 2018. "Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 149-157.
    11. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    12. Hong, Yaxian & Bin, Honghua & Huang, Zhenkun, 2019. "Synchronization of state-switching hopfield-type neural networks: A quantized level set approach," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 16-24.
    13. Yupeng Shi & Dayong Ye, 2023. "Stability Analysis of Delayed Neural Networks via Composite-Matrix-Based Integral Inequality," Mathematics, MDPI, vol. 11(11), pages 1-13, May.
    14. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    15. Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    17. Wang, Zhen & Parastesh, Fatemeh & Rajagopal, Karthikeyan & Hamarash, Ibrahim Ismael & Hussain, Iqtadar, 2020. "Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    18. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    19. Lee, Tae H. & Park, Myeong Jin & Park, Ju H., 2021. "An improved stability criterion of neural networks with time-varying delays in the form of quadratic function using novel geometry-based conditions," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    20. Gao, Zhen-Man & He, Yong & Wu, Min, 2019. "Improved stability criteria for the neural networks with time-varying delay via new augmented Lyapunov–Krasovskii functional," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 258-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s096007792100566x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.