IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics0960077922003794.html
   My bibliography  Save this article

Investigation of fractional order bacteria dependent disease with the effects of different contact rates

Author

Listed:
  • Qu, Haidong
  • Rahman, Mati ur
  • Ahmad, Shabir
  • Riaz, Muhammad Bilal
  • Ibrahim, Muhammaad
  • Saeed, Tareq

Abstract

Bacterial-dependent diseases are the most deadly infections which may lead a patient to death. Nowadays, due to memory and nonlocality, fractional calculus has been used to study various infectious disease models. In this article, the influence of varied contact rates and the non-emigrating populace of the human environment on the transmission of bacteria-infected diseases is investigated using a fractional-order SIS model in the Atangana-Baleanu (AB) sense. Bacterial growth is considered to be logistic, with a linear intrinsic growth rate as a function of infectives. The system existence theory is examined to guarantee that it has at least one and unique solution. The Ulam-Hyres (UH) stability analysis is presented to show that the solution of the given model is stable. A stable numerical technique (Adams-Bashforth) is used to find the approximate solution of the model. The obtained numerical results are depicted through simulations to study the behavior of the different classes of the considered model. The effects of various contact rates are shown through numerical simulations via MATLAB-17.

Suggested Citation

  • Qu, Haidong & Rahman, Mati ur & Ahmad, Shabir & Riaz, Muhammad Bilal & Ibrahim, Muhammaad & Saeed, Tareq, 2022. "Investigation of fractional order bacteria dependent disease with the effects of different contact rates," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003794
    DOI: 10.1016/j.chaos.2022.112169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922003794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fathalla A. Rihan & Dumitru Baleanu & S. Lakshmanan & R. Rakkiyappan, 2014. "On Fractional SIRC Model with Salmonella Bacterial Infection," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-9, April.
    2. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daşbaşı, Bahatdin, 2023. "Fractional order bacterial infection model with effects of anti-virulence drug and antibiotic," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Xu, Changjin & Liu, Zixin & Pang, Yicheng & Saifullah, Sayed & Inc, Mustafa, 2022. "Oscillatory, crossover behavior and chaos analysis of HIV-1 infection model using piece-wise Atangana–Baleanu fractional operator: Real data approach," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Pritam, Kocherlakota Satya & Sugandha, & Mathur, Trilok & Agarwal, Shivi, 2021. "Underlying dynamics of crime transmission with memory," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    4. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Chatibi, Y. & El Kinani, E.H. & Ouhadan, A., 2019. "Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 117-121.
    6. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    10. Marasi, H.R. & Derakhshan, M.H., 2023. "Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 368-389.
    11. Kumar, Sachin & Pandey, Prashant, 2020. "Quasi wavelet numerical approach of non-linear reaction diffusion and integro reaction-diffusion equation with Atangana–Baleanu time fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    12. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    14. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    15. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    17. Rihan, F.A. & Al-Mdallal, Q.M. & AlSakaji, H.J. & Hashish, A., 2019. "A fractional-order epidemic model with time-delay and nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 97-105.
    18. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    19. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    20. Abdo, Mohammed S. & Shah, Kamal & Wahash, Hanan A. & Panchal, Satish K., 2020. "On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.