IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics096007792100240x.html
   My bibliography  Save this article

Heterogeneity of reputation increment driven by individual influence promotes cooperation in spatial social dilemma

Author

Listed:
  • Wang, Jianwei
  • He, Jialu
  • Yu, Fengyuan

Abstract

Cooperation is ubiquitous, but our innate selfishness greatly challenge our motivation to cooperate since natural selection favors the fittest individuals in all the ecosystems. In addition, cooperation is costly, implementing it weighs down the individual wealth and the prosperity of human society. Therefore, how to deal with social dilemma has attracted numerous scholars’ attentions. Among previous researches, indirect reciprocity acts a crucial role in the promotion of cooperation. However, scholars focus more on the consistency and constancy of all the players’ reputation fluctuation, and ignore its potential features, the heterogeneity and dynamic of the reputation increment. In real world, such a scenario can reflect it, for example, a famous person and a notorious person have a totally distinct reputation variation even if they have coincident actions. Inspired by aforesaid particularity of reputation variation, a new mechanism, heterogeneity of reputation increment driven by individual influence is introduced, in which players who have more payoffs than the average of their neighbors’ would be more influential, and their actions would lead to a bigger scale of reputation fluctuation due to more attentions from others. Simulation results show that cooperation is facilitated effectively by our new mechanism, compared with traditional model with constant reputation variation.

Suggested Citation

  • Wang, Jianwei & He, Jialu & Yu, Fengyuan, 2021. "Heterogeneity of reputation increment driven by individual influence promotes cooperation in spatial social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s096007792100240x
    DOI: 10.1016/j.chaos.2021.110887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100240X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen Shen & Chen Chu & Yini Geng & Jiahua Jin & Fei Chen & Lei Shi, 2018. "Cooperation enhanced by the coevolution of teaching activity in evolutionary prisoner's dilemma games with voluntary participation," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-8, February.
    2. Ernst Fehr & Simon Gächter, 2002. "Altruistic punishment in humans," Nature, Nature, vol. 415(6868), pages 137-140, January.
    3. Wang, Jianwei & Wang, Rong & Yu, Fengyuan & Wang, Ziwei & Li, Qiaochu, 2020. "Learning continuous and consistent strategy promotes cooperation in prisoner’s dilemma game with mixed strategy," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    4. Wang, Jianwei & He, Jialu & Yu, Fengyuan & Guo, Yuxin & Li, Meiyu & Chen, Wei, 2020. "Realistic decision-making process with memory and adaptability in evolutionary vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Wang, Jianwei & Yu, Fengyuan & Zhao, Jingyi & Li, Fanfeng & He, Jialu, 2021. "How costly altruism survives? The rescue of both cooperation and voluntary sharing," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Martin A. Nowak & Karl Sigmund, 2005. "Evolution of indirect reciprocity," Nature, Nature, vol. 437(7063), pages 1291-1298, October.
    7. Ko Nishihara, 1999. "Stability of the cooperative equilibrium in N -person prisoners' dilemma with sequential moves," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 13(2), pages 483-494.
    8. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    9. Richard Nelson, 2006. "Evolutionary social science and universal Darwinism," Journal of Evolutionary Economics, Springer, vol. 16(5), pages 491-510, December.
    10. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    11. Wang, Qun & Wang, Hanchen & Zhang, Zhuxi & Li, Yumeng & Liu, Yu & Perc, Matjaž, 2018. "Heterogeneous investments promote cooperation in evolutionary public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 570-575.
    12. Dirk Helbing & Attila Szolnoki & Matjaž Perc & György Szabó, 2010. "Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-9, April.
    13. Su, Zhen & Li, Lixiang & Xiao, Jinghua & Podobnik, B. & Stanley, H. Eugene, 2018. "Promotion of cooperation induced by two-sided players in prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 584-590.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bin & Kang, Wenjun & Sheng, Jinfang & Cheng, Lvhang & Hou, Zhengang, 2021. "Effects of trust-driven updating rule based on reputation in spatial prisoner’s dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    2. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Bi, Yan & Yang, Hui, 2023. "Based on reputation consistent strategy times promotes cooperation in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    4. He, Jialu & Wang, Jianwei & Yu, Fengyuan & Chen, Wei & Xu, Wenshu, 2022. "The persistence and transition of multiple public goods games resolves the social dilemma," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    5. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Zeng, Ziyan & Li, Yuhan & Feng, Minyu, 2022. "The spatial inheritance enhances cooperation in weak prisoner’s dilemmas with agents’ exponential lifespan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    7. Zhang, Lulu & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of donation behavior on the evolution of cooperation in social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Lu, Shounan & Dai, Jianhua & Zhu, Ge & Guo, Li, 2023. "Investigating the effectiveness of interaction-efficiency-driven strategy updating under progressive-interaction for the evolution of the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. He, Jialu & Wang, Jianwei & Yu, Fengyuan & Chen, Wei & Li, Bofan, 2022. "The slow but persistent self-improvement boosts group cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    10. Zhu, Xiaochen, 2023. "The dynamic edge environment under interactive diversity is a double-edged sword," Applied Mathematics and Computation, Elsevier, vol. 436(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    2. Deng, Kuiying & Li, Zhuozheng & Kurokawa, Shun & Chu, Tianguang, 2012. "Rare but severe concerted punishment that favors cooperation," Theoretical Population Biology, Elsevier, vol. 81(4), pages 284-291.
    3. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    4. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    5. Lv, Shaojie & Wang, Xianjia, 2020. "The impact of heterogeneous investments on the evolution of cooperation in public goods game with exclusion," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    6. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    7. Zha, Jiajing & Li, Cong & Fan, Suohai, 2022. "The effect of stability-based strategy updating on cooperation in evolutionary social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    8. Chen, Qin & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of quasi-cooperative strategy on social dilemma evolution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    9. Jin, Jiahua & Chu, Chen & Shen, Chen & Guo, Hao & Geng, Yini & Jia, Danyang & Shi, Lei, 2018. "Heterogeneous fitness promotes cooperation in the spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 141-146.
    10. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Wang, Rong, 2021. "Effects of emotion on the evolution of cooperation in a spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    11. Tetsushi Ohdaira & Takao Terano, 2009. "Cooperation in the Prisoner's Dilemma Game Based on the Second-Best Decision," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-7.
    12. Ding, Rui & Wang, Xianjia & Liu, Yang & Zhao, Jinhua & Gu, Cuiling, 2023. "Evolutionary games with environmental feedbacks under an external incentive mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Bi, Yan & Yang, Hui, 2023. "Based on reputation consistent strategy times promotes cooperation in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    14. Min, Yong & Du, Yuchen & Jin, Cheng, 2018. "The effect of link rewiring on a coevolutionary common pool resource game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 935-944.
    15. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    16. Wang, Chaoqian & Huang, Chaochao, 2022. "Between local and global strategy updating in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    17. Wang, Yi-Ling, 2013. "Asymmetric evaluation of fitness enhances spatial reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 76-81.
    18. Markus Brede, 2013. "Costly Advertising and the Evolution of Cooperation," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    19. Kohei Miyaji & Jun Tanimoto & Zhen Wang & Aya Hagishima & Naoki Ikegaya, 2013. "Direct Reciprocity in Spatial Populations Enhances R-Reciprocity As Well As ST-Reciprocity," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    20. He, Jialu & Wang, Jianwei & Yu, Fengyuan & Chen, Wei & Xu, Wenshu, 2022. "The persistence and transition of multiple public goods games resolves the social dilemma," Applied Mathematics and Computation, Elsevier, vol. 418(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s096007792100240x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.