IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920309619.html
   My bibliography  Save this article

Orthonormal shifted discrete Chebyshev polynomials: Application for a fractal-fractional version of the coupled Schrödinger-Boussinesq system

Author

Listed:
  • Heydari, M.H.
  • Razzaghi, M.
  • Avazzadeh, Z.

Abstract

In this paper, a novel fractal-fractional derivative operator with Mittag-Leffler function as its kernel is introduced. Using this differentiation, the fractal-fractional model of the coupled nonlinear Schrödinger-Boussinesq system is defined. The orthonormal shifted discrete Chebyshev polynomials are generated and used for constructing a computational matrix method to solve the defined system. In the established method, using the matrices of the ordinary and fractal-fractional differentiations of these polynomials, the fractal-fractional system transformed into a system of algebraic equations, which is solved readily. Practicability and precision of the method are examined by solving two numerical examples.

Suggested Citation

  • Heydari, M.H. & Razzaghi, M. & Avazzadeh, Z., 2021. "Orthonormal shifted discrete Chebyshev polynomials: Application for a fractal-fractional version of the coupled Schrödinger-Boussinesq system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309619
    DOI: 10.1016/j.chaos.2020.110570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920309619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khader, M.M. & Saad, K.M., 2018. "A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 169-177.
    2. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Xiao-Jun Yang & Jordan Hristov & H. M. Srivastava & Bashir Ahmad, 2014. "Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-10, June.
    4. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    5. Yang, Xiao-Jun & Machado, J.A. Tenreiro, 2017. "A new fractional operator of variable order: Application in the description of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 276-283.
    6. Srivastava, H.M. & Saad, Khaled M. & Khader, M.M., 2020. "An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    8. Xiao-Jun Yang & Dumitru Baleanu & J. A. Tenreiro Machado, 2013. "Systems of Navier-Stokes Equations on Cantor Sets," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-8, June.
    9. Rayal, Ashish & Ram Verma, Sag, 2020. "Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Sheng-Ping Yan & Hossein Jafari & Hassan Kamil Jassim, 2014. "Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators," Advances in Mathematical Physics, Hindawi, vol. 2014, pages 1-7, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rayal, Ashish & Ram Verma, Sag, 2020. "Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Rahimkhani, Parisa & Heydari, Mohammad Hossein, 2023. "Fractional shifted Morgan–Voyce neural networks for solving fractal-fractional pantograph differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Algehyne, Ebrahem A. & Ibrahim, Muhammad, 2021. "Fractal-fractional order mathematical vaccine model of COVID-19 under non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Sheng Zhang & Yuanyuan Wei & Bo Xu, 2019. "Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Nonlinear Systems: A Concrete Example," Complexity, Hindawi, vol. 2019, pages 1-9, August.
    6. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    7. Babu, N. Ramesh & Balasubramaniam, P., 2022. "Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Riaz, M.B. & Iftikhar, N., 2020. "A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    10. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    11. Xuan, Liu & Ahmad, Shabir & Ullah, Aman & Saifullah, Sayed & Akgül, Ali & Qu, Haidong, 2022. "Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    12. Khan, Hasib & Ahmad, Farooq & Tunç, Osman & Idrees, Muhammad, 2022. "On fractal-fractional Covid-19 mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    13. Babu, N. Ramesh & Balasubramaniam, P., 2023. "Master–slave synchronization for glucose–insulin metabolism of type-1 diabetic Mellitus model based on new fractal–fractional order derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 282-301.
    14. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    15. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    16. Khan, Zeshan Aslam & Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor, 2022. "Generalized fractional strategy for recommender systems with chaotic ratings behavior," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Hari M. Srivastava & Khaled Mohammed Saad & Walid M. Hamanah, 2022. "Certain New Models of the Multi-Space Fractal-Fractional Kuramoto-Sivashinsky and Korteweg-de Vries Equations," Mathematics, MDPI, vol. 10(7), pages 1-13, March.
    18. Saad, Khaled M., 2021. "Fractal-fractional Brusselator chemical reaction," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Dubey, Ved Prakash & Singh, Jagdev & Alshehri, Ahmed M. & Dubey, Sarvesh & Kumar, Devendra, 2022. "An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 296-318.
    20. Admon, Mohd Rashid & Senu, Norazak & Ahmadian, Ali & Majid, Zanariah Abdul & Salahshour, Soheil, 2024. "A new modern scheme for solving fractal–fractional differential equations based on deep feedforward neural network with multiple hidden layer," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 311-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.