IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304677.html
   My bibliography  Save this article

Interacting faults in california and hindu kush

Author

Listed:
  • Muir, Callum
  • Cortez, Jordan
  • Grigolini, Paolo

Abstract

We study seismic fluctuations in California and Hindu Kush using Diffusion Entropy Analysis (DEA), a technique designed to detect the action of crucial events in time series generated by complex dynamical systems. The time distance between two consecutive crucial events is described by an inverse power law distribution density with a power index μ close to the value μ=2,corresponding to an ideal 1/f noise. DEA was used in the recent past to study neurophysiological processes that in the healthy condition are found to generate 1/f noise and μ close to 2. In this paper we find that in both California and Hindu-Kush the seismic fluctuations of extended areas, implying the action of many faults, yield μ ≈ 2.1, while the regions involving the action of only one fault, or of a very small number of faults, are characterized by μ ≈ 2.4. This observation leads us to make the conjecture that the seismic criticality is due to the interaction of many faults. To support this conjecture we adopt a dynamical model for fault dynamics proposed by Braun and Tosatti and we extend it to describe the interaction between many faults. The DEA applied to surrogate sequences generated by this dynamical model, yields μ=2.37for a single fault and μ=2.16for many interacting faults, in a better agreement with the observation of real seismic fluctuations. This result supports our conjecture and suggests interesting applications to neurophysiological and sociological processes.

Suggested Citation

  • Muir, Callum & Cortez, Jordan & Grigolini, Paolo, 2020. "Interacting faults in california and hindu kush," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304677
    DOI: 10.1016/j.chaos.2020.110070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Korosh Mahmoodi & Bruce J. West & Paolo Grigolini, 2018. "Self-Organized Temporal Criticality: Bottom-Up Resilience versus Top-Down Vulnerability," Complexity, Hindawi, vol. 2018, pages 1-10, March.
    2. Hayat, Umar & Barkat, Adnan & Ali, Aamir & Rehman, Khaista & Sifat, Shazia & Iqbal, Talat, 2019. "Fractal analysis of shallow and intermediate-depth seismicity of Hindu Kush," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 71-82.
    3. Jagielski, Maciej & Kutner, Ryszard & Sornette, Didier, 2017. "Theory of earthquakes interevent times applied to financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 68-73.
    4. Sylvain Michel & Adriano Gualandi & Jean-Philippe Avouac, 2019. "Similar scaling laws for earthquakes and Cascadia slow-slip events," Nature, Nature, vol. 574(7779), pages 522-526, October.
    5. Zare, Marzieh & Grigolini, Paolo, 2013. "Criticality and avalanches in neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Zihan & Deng, Yong, 2022. "Derive power law distribution with maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Baxley, Jacob D. & Lambert, David R. & Bologna, Mauro & West, Bruce J. & Grigolini, Paolo, 2023. "Unveiling pseudo-crucial events in noise-induced phase transitions," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. S. Askar & A. Al-khedhairi, 2019. "Analysis of a Four-Firm Competition Based on a Generalized Bounded Rationality and Different Mechanisms," Complexity, Hindawi, vol. 2019, pages 1-12, May.
    2. F. Corbi & J. Bedford & P. Poli & F. Funiciello & Z. Deng, 2022. "Probing the seismic cycle timing with coseismic twisting of subduction margins," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Hongyu Yu & Rebecca M. Harrington & Honn Kao & Yajing Liu & Bei Wang, 2021. "Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Biton, Dionessa C. & Tarun, Anjali B. & Batac, Rene C., 2020. "Comparing spatio-temporal networks of intermittent avalanche events: Experiment, model, and empirical data," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    6. Paolo Grigolini, 2019. "Cognition: from Physiology to Sociology and Back," Annals of Social Sciences & Management studies, Juniper Publishers Inc., vol. 2(4), pages 110-111, January.
    7. Pagnottoni, Paolo & Spelta, Alessandro & Pecora, Nicolò & Flori, Andrea & Pammolli, Fabio, 2021. "Financial earthquakes: SARS-CoV-2 news shock propagation in stock and sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    8. García-Miguel, Carmen & San Martín, Jesús, 2021. "Covering fractals with constant radius tiles: Distribution functions and their implications for resource management," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Hui Huang & Jessica C. Hawthorne, 2022. "Linking the scaling of tremor and slow slip near Parkfield, CA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Li, Zhongping & Cui, Lirong & Chen, Jianhui, 2018. "Traffic accident modelling via self-exciting point processes," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 312-320.
    12. Tao, Yong & Sornette, Didier & Lin, Li, 2021. "Emerging social brain: A collective self-motivated Boltzmann machine," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Prabhav Borate & Jacques Rivière & Chris Marone & Ankur Mali & Daniel Kifer & Parisa Shokouhi, 2023. "Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Baxley, Jacob D. & Lambert, David R. & Bologna, Mauro & West, Bruce J. & Grigolini, Paolo, 2023. "Unveiling pseudo-crucial events in noise-induced phase transitions," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.