IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v132y2020ics0960077919305077.html
   My bibliography  Save this article

Nonlinear analysis of pedestrian flow Reynolds number in video scenes

Author

Listed:
  • Liu, Shang
  • Li, Peiyu

Abstract

Research on crowd motion state plays an essential role for public safety and security. This paper aims to investigate the chaotic characteristics of pedestrian flow as a dynamical system. Firstly, pedestrian flow Reynolds number is proposed, which is a novel feature descriptor derived from Hydrodynamics, to describe crowd motion state. Secondly, the calculation method of pedestrian flow Reynolds number in video is put forward to characterize the motion state of the pedestrian flow. Thirdly, nonlinear time series analysis tools, including time delay embedding and largest Lyapunov exponent are applied to verify the chaos of pedestrian flow’s motion. Experiments are performed on different data sets and the result that all the largest Lyapunov exponent are positive could indeed demonstrate the complexity and chaos of crowd motion. Meanwhile, it turns out that pedestrian flow Reynolds number put forward in the paper can effectively characterize the motion state of pedestrian flow. Our work paves a new way for research on crowd turbulence. It could potentially be applied to pattern analysis of crowd abnormal behavior analysis, crowd motion understanding, which can be used to improve the efficiency of public security management.

Suggested Citation

  • Liu, Shang & Li, Peiyu, 2020. "Nonlinear analysis of pedestrian flow Reynolds number in video scenes," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305077
    DOI: 10.1016/j.chaos.2019.109550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919305077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    2. Carlo Bianca & Caterina Mogno, 2018. "Modelling pedestrian dynamics into a metro station by thermostatted kinetic theory methods," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 24(2), pages 207-235, March.
    3. Anders Johansson & Dirk Helbing & Habib Z. Al-Abideen & Salim Al-Bosta, 2008. "From Crowd Dynamics To Crowd Safety: A Video-Based Analysis," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 497-527.
    4. Ginoux, Jean-Marc & Ruskeepää, Heikki & Perc, Matjaž & Naeck, Roomila & Costanzo, Véronique Di & Bouchouicha, Moez & Fnaiech, Farhat & Sayadi, Mounir & Hamdi, Takoua, 2018. "Is type 1 diabetes a chaotic phenomenon?," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 198-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Yan-Qun & Zhou, Shu-Guang & Duan, Ya-Li & Huang, Xiao-Qian, 2023. "A viscous continuum model with smoke effect for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    2. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    3. Liang, Haoyang & Du, Jie & Wong, S.C., 2021. "A Continuum model for pedestrian flow with explicit consideration of crowd force and panic effects," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 100-117.
    4. Femke van Wageningen-Kessels & Winnie Daamen & Serge P. Hoogendoorn, 2018. "Two-Dimensional Approximate Godunov Scheme and What It Means For Continuum Pedestrian Flow Models," Transportation Science, INFORMS, vol. 52(3), pages 547-563, June.
    5. Jiang, Yan-Qun & Zhang, Wei & Zhou, Shu-Guang, 2016. "Comparison study of the reactive and predictive dynamic models for pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 51-61.
    6. Cristiani, E. & Menci, M. & Malagnino, A. & Amaro, G.G., 2023. "An all-densities pedestrian simulator based on a dynamic evaluation of the interpersonal distances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    7. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    8. Jinghong Wang & Siuming Lo & Qingsong Wang & Jinhua Sun & Honglin Mu, 2013. "Risk of Large‐Scale Evacuation Based on the Effectiveness of Rescue Strategies Under Different Crowd Densities," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1553-1563, August.
    9. Tanimoto, Jun & Hagishima, Aya & Tanaka, Yasukaka, 2010. "Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5611-5618.
    10. Mikhail Kolev, 2019. "Mathematical Analysis of an Autoimmune Diseases Model: Kinetic Approach," Mathematics, MDPI, vol. 7(11), pages 1-14, October.
    11. Clements, Richard R & Hughes, Roger L, 2004. "Mathematical modelling of a mediaeval battle: the Battle of Agincourt, 1415," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 259-269.
    12. Hoogendoorn, Serge P. & Bovy, Piet H. L., 2004. "Dynamic user-optimal assignment in continuous time and space," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 571-592, August.
    13. Wang, Jinhuan & Zhang, Lei & Shi, Qiongyu & Yang, Peng & Hu, Xiaoming, 2015. "Modeling and simulating for congestion pedestrian evacuation with panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 396-409.
    14. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    15. Li, Lin & Yu, Zhonghai & Chen, Yang, 2014. "Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 157-172.
    16. Fu, Libi & Liu, Yuxing & Shi, Yongqian & Zhao, Yongxiang, 2021. "Dynamics of bidirectional pedestrian flow in a corridor including individuals with disabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    17. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    18. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    19. Cui, Xiaoting & Ji, Jingwei & Bai, Xuehe & Cao, Yin & Wu, Tong, 2022. "Research and realization of parallel algorithms for large scale crowd evacuation in emergency," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 713-724.
    20. Jiang, Yan-Qun & Zhou, Shu-Guang & Duan, Ya-Li & Huang, Xiao-Qian, 2023. "A viscous continuum model with smoke effect for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.