IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v131y2020ics0960077919305065.html
   My bibliography  Save this article

Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model

Author

Listed:
  • Bashkirtseva, Irina
  • Ryashko, Lev
  • Ryazanova, Tatyana

Abstract

An eco-epidemiological system with disease in the prey species is studied. We consider 3D dynamical SIP-model of interacting populations of susceptible (S) prey, infected (I) prey, and predator (P). A variability of regimes, both regular and chaotic, is described via bifurcation analysis in dependence on the rate of the infection spread. It is shown how parametric stochastic disturbances can drastically change a behavior system and cause both total extinction of all populations and the recovery of prey. For the parametric analysis of stochastic phenomena, we use the mathematical approach based on the stochastic sensitivity function technique and method of principal directions. Results of the application of this approach are compared with data of the direct numerical simulation. A phenomenon of the noise-induced chaos in this eco-epidemiological SIP-model is discussed.

Suggested Citation

  • Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2020. "Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919305065
    DOI: 10.1016/j.chaos.2019.109549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919305065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castellanos, Víctor & Chan-López, Ramón E., 2017. "Existence of limit cycles in a three level trophic chain with Lotka–Volterra and Holling type II functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 157-167.
    2. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    3. Saifuddin, Md. & Biswas, Santanu & Samanta, Sudip & Sarkar, Susmita & Chattopadhyay, Joydev, 2016. "Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 270-285.
    4. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    5. Ryashko, L. & Bashkirtseva, I. & Gubkin, A. & Stikhin, P., 2009. "Confidence tori in the analysis of stochastic 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 256-269.
    6. A. Dubkov & B. Spagnolo, 2008. "Verhulst model with Lévy white noise excitation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 361-367, October.
    7. Alzahrani, Abdullah K. & Alshomrani, Ali Saleh & Pal, Nikhil & Samanta, Sudip, 2018. "Study of an eco-epidemiological model with Z-type control," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 197-208.
    8. Yan Wang & Daqing Jiang, 2017. "Stationary Distribution and Extinction of a Stochastic Viral Infection Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-13, October.
    9. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 510-517.
    10. La Barbera, A & Spagnolo, B, 2002. "Spatio-temporal patterns in population dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 120-124.
    11. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    12. Bashkirtseva, I.A. & Ryashko, L.B., 2004. "Stochastic sensitivity of 3D-cycles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 66(1), pages 55-67.
    13. Gilioli, G. & Groppi, M. & Vesperoni, M.P. & Baumgärtner, J. & Gutierrez, A.P., 2009. "An epidemiological model of East Coast Fever in African livestock," Ecological Modelling, Elsevier, vol. 220(13), pages 1652-1662.
    14. Terry, Alan J., 2015. "A population model with birth pulses, age structure, and non-overlapping generations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 400-417.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashkirtseva, Irina & Perevalova, Tatyana & Ryashko, Lev, 2022. "Regular and chaotic variability caused by random disturbances in a predator–prey system with disease in predator," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Bashkirtseva, Irina & Perevalova, Tatyana & Ryashko, Lev, 2020. "Noise-induced shifts in dynamics of multi-rhythmic population SIP-model," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Sabbar, Yassine & Din, Anwarud & Kiouach, Driss, 2023. "Influence of fractal–fractional differentiation and independent quadratic Lévy jumps on the dynamics of a general epidemic model with vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Bashkirtseva, Irina & Zaitseva, Svetlana, 2021. "Variability, transients and excitement in a stochastic model of enzyme kinetics," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashkirtseva, Irina & Perevalova, Tatyana & Ryashko, Lev, 2020. "Noise-induced shifts in dynamics of multi-rhythmic population SIP-model," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    3. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Stationary distribution of a stochastic delayed SVEIR epidemic model with vaccination and saturation incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 849-863.
    4. Liu, Yue, 2022. "Extinction, persistence and density function analysis of a stochastic two-strain disease model with drug resistance mutation," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    5. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    6. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    7. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    8. Liu, Yan & Zhang, Di & Su, Huan & Feng, Jiqiang, 2019. "Stationary distribution for stochastic coupled systems with regime switching and feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Han, Bingtao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Wang, Zhixiao & Rui, Xiaobin & Yuan, Guan & Cui, Jingjing & Hadzibeganovic, Tarik, 2021. "Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    11. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    12. Zhou, Baoquan & Han, Bingtao & Jiang, Daqing, 2021. "Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Kiouach, Driss & El-idrissi, Salim El Azami & Sabbar, Yassine, 2023. "An improvement of the extinction sufficient conditions for a higher-order stochastically disturbed AIDS/HIV model," Applied Mathematics and Computation, Elsevier, vol. 447(C).
    14. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    15. Zhang, Beibei & Wang, Hangying & Lv, Guangying, 2018. "Exponential extinction of a stochastic predator–prey model with Allee effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 192-204.
    16. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 289-304.
    17. Rajasekar, S.P. & Pitchaimani, M., 2020. "Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    18. Wang, Qi & Xiang, Kainan & Zhu, Chunhui & Zou, Lang, 2023. "Stochastic SEIR epidemic models with virus mutation and logistic growth of susceptible populations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 289-309.
    19. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2019. "Stochastic variability and transitions to chaos in a hierarchical three-species population model," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 276-283.
    20. Irina Bashkirtseva & Makar Pavletsov & Tatyana Perevalova & Lev Ryashko, 2023. "Analysis of Noise-Induced Transitions in a Thermo-Kinetic Model of the Autocatalytic Trigger," Mathematics, MDPI, vol. 11(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919305065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.