IDEAS home Printed from
   My bibliography  Save this article

The use of Artificial Neural Network models for CO2 capture plants


  • Sipöcz, Nikolett
  • Tobiesen, Finn Andrew
  • Assadi, Mohsen


Artificial Neural Networks (ANN) are multifaceted tools that can be used to model and predict various complex and highly non-linear processes. This paper presents the development and validation of an ANN model of a CO2 capture plant. An evaluation of the concept is made of the usefulness of the ANN model as well as a discussion of its feasibility for further integration into a conventional heat and mass balance programme. It is shown that the trained ANN model can reproduce the results of a rigorous process simulator in fraction of the simulation time. A multilayer feed-forward form of Artificial Neural Network was used to capture and model the non-linear relationship between inputs and outputs of the CO2 capture process. The data used for training and validation of the ANN were obtained using the process simulator CO2SIM. The ANN model was trained by performing fully automatic batch simulations using CO2SIM over the entire range of actual operation for an amine based absorption plant. The trained model was then used for finding the optimum operation for the example plant with respect to lowest possible specific steam duty and maximum CO2 capture rate. Two different algorithms have been used and compared for the training of the ANN and a sensitivity analysis was carried out to find the minimum number of input parameters needed while maintaining sufficient accuracy of the model. The reproducibility shows error less than 0.2% for the closed loop absorber/desorber plant. The results of this study show that trained ANN models are very useful for fast simulation of complex steady state process with high reproducibility of the rigorous model.

Suggested Citation

  • Sipöcz, Nikolett & Tobiesen, Finn Andrew & Assadi, Mohsen, 2011. "The use of Artificial Neural Network models for CO2 capture plants," Applied Energy, Elsevier, vol. 88(7), pages 2368-2376, July.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2368-2376

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fast, M. & Assadi, M. & De, S., 2009. "Development and multi-utility of an ANN model for an industrial gas turbine," Applied Energy, Elsevier, vol. 86(1), pages 9-17, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    2. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    3. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    4. Errico, Massimiliano & Madeddu, Claudio & Pinna, Daniele & Baratti, Roberto, 2016. "Model calibration for the carbon dioxide-amine absorption system," Applied Energy, Elsevier, vol. 183(C), pages 958-968.
    5. Mores, Patricia & Scenna, Nicolás & Mussati, Sergio, 2012. "CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process," Energy, Elsevier, vol. 45(1), pages 1042-1058.
    6. Dong, Ruifeng & Lu, Hongfang & Yu, Yunsong & Zhang, Zaoxiao, 2012. "A feasible process for simultaneous removal of CO2, SO2 and NOx in the cement industry by NH3 scrubbing," Applied Energy, Elsevier, vol. 97(C), pages 185-191.
    7. Kim, Youngmin & Jang, Hochang & Kim, Junggyun & Lee, Jeonghwan, 2017. "Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network," Applied Energy, Elsevier, vol. 185(P1), pages 916-928.
    8. Chen, Wei-Hsin & Chen, Shu-Mi & Hung, Chen-I, 2013. "Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach," Applied Energy, Elsevier, vol. 111(C), pages 731-741.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2368-2376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.