IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i2p650-660.html
   My bibliography  Save this article

Novel heating and cooling concept employing rainwater cisterns and thermo-active building systems for a residential building

Author

Listed:
  • Kalz, Doreen E.
  • Wienold, Jan
  • Fischer, Martin
  • Cali, Davide

Abstract

This paper introduces and evaluates a novel heating and cooling concept employing thermo-active building systems and environmental energy, harnessed from two 11-m3 rainwater cisterns for a 285-m2 residential building in passive house standard in Germany. The building strives for a significantly reduced primary energy use with carefully coordinated measures, such as high quality building envelope, by means of vacuum insulated panels, supply and exhaust air system with heat recovery, reduced solar heat gains (solar shading), and the integration of thermal solar collectors and photovoltaic in the plant system. On this premise, a comprehensive long-term monitoring in high time-resolution was carried out for the building for two years with an accompanying commissioning of the building performance. Measurements comprise the energy use for heating, cooling, and ventilation, as well as the auxiliary equipment, the performance of the environmental heat source and sink (rainwater cistern), thermal comfort, and local climatic site conditions. The analysis focuses on the performance and the efficiency of rainwater cisterns as natural heat source and sink as well as the heat pump system. The paper discusses the performance of thermo-active building systems, investigates the thermal comfort, determines the efficiency of the heating/cooling system, and evaluates the total end and primary energy use of the building.

Suggested Citation

  • Kalz, Doreen E. & Wienold, Jan & Fischer, Martin & Cali, Davide, 2010. "Novel heating and cooling concept employing rainwater cisterns and thermo-active building systems for a residential building," Applied Energy, Elsevier, vol. 87(2), pages 650-660, February.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:2:p:650-660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00235-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joudi, Ali & Svedung, Harald & Bales, Chris & Rönnelid, Mats, 2011. "Highly reflective coatings for interior and exterior steel cladding and the energy efficiency of buildings," Applied Energy, Elsevier, vol. 88(12), pages 4655-4666.
    2. Kalz, Doreen E. & Pfafferott, Jens & Herkel, Sebastian & Wagner, Andreas, 2011. "Energy and efficiency analysis of environmental heat sources and sinks: In-use performance," Renewable Energy, Elsevier, vol. 36(3), pages 916-929.
    3. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
    4. Mourshed, Monjur, 2011. "The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh," Applied Energy, Elsevier, vol. 88(11), pages 3737-3746.
    5. Upshaw, Charles R. & Rhodes, Joshua D. & Webber, Michael E., 2017. "Modeling electric load and water consumption impacts from an integrated thermal energy and rainwater storage system for residential buildings in Texas," Applied Energy, Elsevier, vol. 186(P3), pages 492-508.
    6. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    7. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Energy storage and heat extraction – From thermally activated building systems (TABS) to thermally homeostatic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 677-685.
    8. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
    9. Wang, Lin-Shu & Ma, Peizheng, 2016. "The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings," Applied Energy, Elsevier, vol. 162(C), pages 183-196.
    10. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
    11. Almodovar, José Manuel & La Roche, Pablo, 2019. "Roof ponds combined with a water-to-air heat exchanger as a passive cooling system: Experimental comparison of two system variants," Renewable Energy, Elsevier, vol. 141(C), pages 195-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:2:p:650-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.