IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i5p640-644.html
   My bibliography  Save this article

Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation

Author

Listed:
  • Mohanty, Sujit Kumar
  • Behera, Shuvasis
  • Swain, Manas Ranjan
  • Ray, Ramesh Chandra

Abstract

There is a growing interest worldwide to find out new and cheap carbohydrate sources for production of bioethanol. In this context, the production of ethanol from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae in solid-state fermentation was investigated. The moisture level of 70%, pH of 6.0 and temperature of 30 °C were found optimum for maximum ethanol concentration (225.0 ± 4.0 g/kg flower) obtained from mahula flowers after 72 h of fermentation. Concomitant with highest ethanol concentration, the maximum ethanol productivity (3.13 g/kg flower/h), yeast biomass (18.5 x 108 CFU/g flower), the ethanol yield (58.44 g/100 g sugar consumed) and the fermentation efficiency (77.1%) were also obtained at these parametric levels.

Suggested Citation

  • Mohanty, Sujit Kumar & Behera, Shuvasis & Swain, Manas Ranjan & Ray, Ramesh Chandra, 2009. "Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation," Applied Energy, Elsevier, vol. 86(5), pages 640-644, May.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:5:p:640-644
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00215-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behera, Shuvashish & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2011. "Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs," Applied Energy, Elsevier, vol. 88(1), pages 212-215, January.
    2. Mojović, Ljiljana & Pejin, Dušanka & Rakin, Marica & Pejin, Jelena & Nikolić, Svetlana & Djukić-Vuković, Aleksandra, 2012. "How to improve the economy of bioethanol production in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6040-6047.
    3. Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
    4. Behera, Shuvashish & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2010. "Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae and Zymomonas mobilis," Applied Energy, Elsevier, vol. 87(7), pages 2352-2355, July.
    5. Khoshnevisan, Benyamin & Shafiei, Marzieh & Rajaeifar, Mohammad Ali & Tabatabaei, Meisam, 2016. "Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach," Energy, Elsevier, vol. 114(C), pages 935-950.
    6. Zhao, Xihua & Yi, Shi & Li, Hanxin, 2019. "The optimized co-cultivation system of Penicillium oxalicum 16 and Trichoderma reesei RUT-C30 achieved a high yield of hydrolase applied in second-generation bioethanol production," Renewable Energy, Elsevier, vol. 136(C), pages 1028-1035.
    7. Canabarro, Nicholas I. & Alessio, Cláudia & Foletto, Edson L. & Kuhn, Raquel C. & Priamo, Wagner L. & Mazutti, Marcio A., 2017. "Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor," Renewable Energy, Elsevier, vol. 102(PA), pages 9-14.
    8. Tripti Agrawal & Afaque Quraishi & Shailesh Kumar Jadhav, 2019. "Bioethanol production from Madhuca latifolia L. flowers by a newly isolated strain of Pichia kudriavzevii," Energy & Environment, , vol. 30(8), pages 1477-1490, December.
    9. Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
    10. Mazaheri, Davood & Shojaosadati, Seyed Abbas & Mousavi, Seyyed Mohammad & Hejazi, Parisa & Saharkhiz, Saeed, 2012. "Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis," Applied Energy, Elsevier, vol. 99(C), pages 372-378.
    11. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:5:p:640-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.