IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v65y2000i1-4p91-98.html
   My bibliography  Save this article

Energy recovery from dairy waste-waters: impacts of biofilm support systems on anaerobic CST reactors

Author

Listed:
  • Ramasamy, E. V.
  • Abbasi, S. A.

Abstract

Anaerobic digestion is one of the major steps involved in the treatment of dairy industry waste-waters and many CSTRs (continuously-stirred tank reactors) are functioning for this purpose all over the world. In this paper, the authors describe their attempts to upgrade a CSTR's performance by incorporating a biofilm support system (BSS) within the existing reactor. The focus of the work was to find an inexpensive and easy to install BSS which could significantly enhance the rates of waste treatment and methane recovery. Rolls of nylon mesh (with ~1 mm openings), of 5 cm height and 2 cm dia, when incorporated in the CSTR at the biofilm surface (with a digester volume ratio 0.3 cm2/cm3), enabled the CSTR to perform better with > 20% improvement in the methane yield. Such simple BSS devices can significantly improve the performance of a CSTR anaerobic digester treating dairy wastes. The enhancement is due to the development of active biofilms which not only enhance the microorganism-waste contact but also reduce the microbial washout. Such devices are inexpensive and very easy to incorporate -- the gains are thus achieved with very little cost and effort.

Suggested Citation

  • Ramasamy, E. V. & Abbasi, S. A., 2000. "Energy recovery from dairy waste-waters: impacts of biofilm support systems on anaerobic CST reactors," Applied Energy, Elsevier, vol. 65(1-4), pages 91-98, April.
  • Handle: RePEc:eee:appene:v:65:y:2000:i:1-4:p:91-98
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(99)00079-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad, Ashfaq & Buang, Azizul & Bhat, A.H., 2016. "Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 214-234.
    2. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    3. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    4. Yu, Liang & Ma, Jingwei & Frear, Craig & Zhao, Quanbao & Dillon, Robert & Li, Xiujin & Chen, Shulin, 2013. "Multiphase modeling of settling and suspension in anaerobic digester," Applied Energy, Elsevier, vol. 111(C), pages 28-39.
    5. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    6. Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
    7. Nahar, Gaurav & Mote, Dhananjay & Dupont, Valerie, 2017. "Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1032-1052.
    8. Li, Demao & Tang, Ruohao & Yu, Liang & Chen, Limei & Chen, Shulin & Xu, Song & Gao, Feng, 2020. "Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste," Renewable Energy, Elsevier, vol. 153(C), pages 420-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:65:y:2000:i:1-4:p:91-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.