IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v398y2025ics0306261925011146.html

Deep Q-network based battery energy storage system control strategy with charging/discharging times considered

Author

Listed:
  • Cai, Jun
  • Fu, Maowen
  • Yan, Ying
  • Chen, Zhong
  • Zhang, Xin

Abstract

The Battery Energy Storage System (BESS) plays a pivotal role in maintaining the balance of electricity supply and demand on the user side. This paper proposes an energy management system (EMS) for the BESS based on the Deep Q-Network (DQN) algorithm that takes into account the battery charging and discharging times. Initially, a mathematical model of the EMS is established. Subsequently, the optimal decision-making process of EMS is formulated as Markov Decision Process (MDP), and based on this, the MDP formula and DQN algorithm are designed to design charging/discharging schedules based on load conditions. Finally, an experimental study was conducted based on the actual load data of a certain line in Zunyi, Guizhou, China. The test results show that the optimization method proposed in this study reduces the maximum variance of power grid fluctuations to 49 % of the original variance, while reducing the number of battery charging and discharging cycles to the range of 1/3 to 1/2 of the initial value. This delays the battery aging process, improving the economic and practical efficiency of energy management strategies.

Suggested Citation

  • Cai, Jun & Fu, Maowen & Yan, Ying & Chen, Zhong & Zhang, Xin, 2025. "Deep Q-network based battery energy storage system control strategy with charging/discharging times considered," Applied Energy, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011146
    DOI: 10.1016/j.apenergy.2025.126384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925011146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhibin Liu & Feng Guo & Jiaqi Liu & Xinyan Lin & Ao Li & Zhaoyan Zhang & Zhiheng Liu, 2023. "A Compound Coordinated Optimal Operation Strategy of Day-Ahead-Rolling-Realtime in Integrated Energy System," Energies, MDPI, vol. 16(1), pages 1-19, January.
    2. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    2. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
    4. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    5. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    6. Christian Montaleza & Paul Arévalo & Jimmy Gallegos & Francisco Jurado, 2024. "Enhancing Energy Management Strategies for Extended-Range Electric Vehicles through Deep Q-Learning and Continuous State Representation," Energies, MDPI, vol. 17(2), pages 1-21, January.
    7. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    8. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    9. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    10. Jichao Liu & Yanyan Liang & Zheng Chen & Wenpeng Chen, 2023. "Energy Management Strategies for Hybrid Loaders: Classification, Comparison and Prospect," Energies, MDPI, vol. 16(7), pages 1-23, March.
    11. Sun, Wenjing & Zou, Yuan & Zhang, Xudong & Guo, Ningyuan & Zhang, Bin & Du, Guodong, 2022. "High robustness energy management strategy of hybrid electric vehicle based on improved soft actor-critic deep reinforcement learning," Energy, Elsevier, vol. 258(C).
    12. Shi, Wenzhuo & Huangfu, Yigeng & Xu, Liangcai & Pang, Shengzhao, 2022. "Online energy management strategy considering fuel cell fault for multi-stack fuel cell hybrid vehicle based on multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 328(C).
    13. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    14. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
    15. Li, Guozhen & Zhang, Zhenyu & Shi, Wankai & Li, Wenyong, 2023. "Energy management strategy and simulation analysis of a hybrid train based on a comprehensive efficiency optimization," Applied Energy, Elsevier, vol. 349(C).
    16. Yu, Nanpeng & Zhang, Shaorong & Qin, Jingtao & Hidalgo-Gonzalez, Patricia & Dobbe, Roel & Liu, Yang & Dubey, Anamika & Wang, Yubo & Dirkman, John & Zhong, Haiwang & Lu, Ning & Ma, Emily & Ding, Zhaoha, 2025. "Data-driven control, optimization, and decision-making in active power distribution networks," Applied Energy, Elsevier, vol. 397(C).
    17. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    19. Hu, Xiao & Wang, Ping & Hu, Yunfeng & Chen, Hong, 2020. "A stability-guaranteed and energy-conserving torque distribution strategy for electric vehicles under extreme conditions," Applied Energy, Elsevier, vol. 259(C).
    20. Huang, Xuejin & Zhang, Jingyi & Ou, Kai & Huang, Yin & Kang, Zehao & Mao, Xuping & Zhou, Yujie & Xuan, Dongji, 2024. "Deep reinforcement learning-based health-conscious energy management for fuel cell hybrid electric vehicles in model predictive control framework," Energy, Elsevier, vol. 304(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:398:y:2025:i:c:s0306261925011146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.