Author
Listed:
- Meli, Matteo
- Wang, Zezhou
- Sterlepper, Stefan
- Picerno, Mario
- Pischinger, Stefan
Abstract
This paper presents an efficient pre-calibration method for combustion engine controls. In particular, it focuses on the initial shaping of multiple Lookup Tables (LUTs) within LUT-based Multiple-Input Single-Output (MISO) engine control systems. The approach addresses the increasing complexity of engine software, the rising number of calibration variables, and the time pressures prevalent in automotive development. Employing a white-box Model-in-the-Loop (MiL) optimization reduces the demands on hardware reliance and optimization time compared to conventional engine calibration techniques. The white-box model enables the pre-calibration of LUTs using known system inputs, expected system outputs, and the control system model structure. To optimize the white-box control system model, LUTs are parametrized through Rational Bézier Regression (RBR), facilitating Sequential Quadratic Programming (SQP) for optimization. RBR, which includes both Rational Bézier Curve Regression (RBCR) and Rational Bézier Surface Regression (RBSR), allows for flexible and smooth shaping of 1D and 2D LUTs with a unified and few number of parameters. The pre-calibration process is further improved using historical calibration data from various vehicle variants stored in a relational database. This ensures that the final outputs of the LUT-based MISO control system closely approximate the expected target outputs with high shape similarity. The proposed method is exemplified using an oil temperature control model from a state-of-the-art hybrid powertrain with an internal combustion engine. The results demonstrate Pearson Correlation Coefficients (PCCs) exceeding 0.8 between target and pre-calibrated LUTs, indicative of high shape similarity. Additionally, the system outputs of pre-calibrated control system models closely match expected system outputs with an R2 value of 0.9385. This underscores the practical applicability of the proposed pre-calibration method for internal combustion engine controls.
Suggested Citation
Meli, Matteo & Wang, Zezhou & Sterlepper, Stefan & Picerno, Mario & Pischinger, Stefan, 2025.
"Data-driven parametric optimization for pre-calibration of internal combustion engine controls,"
Applied Energy, Elsevier, vol. 392(C).
Handle:
RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006233
DOI: 10.1016/j.apenergy.2025.125893
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006233. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.