IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261925000753.html
   My bibliography  Save this article

Transient response of low platinum-loaded proton exchange membrane fuel cells with various cathode catalyst layer compositions

Author

Listed:
  • Saeidfar, Asal
  • Yesilyurt, Serhat

Abstract

Exploring catalyst layer (CL) compositions is crucial for achieving high-performance, low platinum (Pt)-loaded proton exchange membrane (PEM) fuel cell cathodes, yet transient effects of these compositions are often overlooked. This study experimentally measures dynamic cell responses in different Pt-loaded CLs and develops a transient non-isothermal two-phase pseudo-three-dimensional model incorporating microstructural features using a single serpentine-channel cell in Galvano-dynamic mode. The model is first employed to capture voltage responses in different Pt-loaded CLs and later is utilized to simulate voltage transients of cells with varying ionomer-to‑carbon (I/C) ratios, mass fraction of bare carbon particles, and CL thicknesses, focusing on transients of cathode overpotential, CL ionomer potential loss, and water saturation. An abrupt increase in current density among various Pt-loaded CLs triggers a voltage undershoot followed by an overshoot, with a gradual voltage decline over time. Transient responses in CLs with varying I/C ratios are dominated by CL ionomer potential loss, which increases during abrupt current density rises but decreases with water production at a steady current density. Higher bare carbon mass fractions primarily affect cathode overpotentials, causing greater undershoots, while thicker CLs exhibit more pronounced undershoots and longer transition times, driven by CL ionomer potential loss and water saturation dynamics.

Suggested Citation

  • Saeidfar, Asal & Yesilyurt, Serhat, 2025. "Transient response of low platinum-loaded proton exchange membrane fuel cells with various cathode catalyst layer compositions," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000753
    DOI: 10.1016/j.apenergy.2025.125345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925000753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mu, Yu-Tong & Weber, Adam Z. & Gu, Zhao-Lin & Tao, Wen-Quan, 2019. "Mesoscopic modeling of transport resistances in a polymer-electrolyte fuel-cell catalyst layer: Analysis of hydrogen limiting currents," Applied Energy, Elsevier, vol. 255(C).
    2. Jia, Fei & Tian, Xiaodi & Liu, Fengfeng & Ye, Junjie & Yang, Chengpeng, 2023. "Oxidant starvation under various operating conditions on local and transient performance of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 331(C).
    3. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi, 2024. "Investigating the transient electrical behaviors in PEM fuel cells under various platinum distributions within cathode catalyst layers," Applied Energy, Elsevier, vol. 359(C).
    4. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    5. Kim, Bosung & Cha, Dowon & Kim, Yongchan, 2015. "The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions," Applied Energy, Elsevier, vol. 138(C), pages 143-149.
    6. He, Pu & Mu, Yu-Tong & Park, Jae Wan & Tao, Wen-Quan, 2020. "Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi & Wei, Pengnan, 2024. "Enhancing PEM fuel cell dynamic performance: Co-optimization of cathode catalyst layer composition and operating conditions using a novel surrogate model," Renewable Energy, Elsevier, vol. 231(C).
    2. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi, 2024. "Investigating the transient electrical behaviors in PEM fuel cells under various platinum distributions within cathode catalyst layers," Applied Energy, Elsevier, vol. 359(C).
    3. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    4. Xia, Zhifeng & Chen, Huicui & Li, Weihong & Zhang, Ruirui & Xu, Yiming & Zhang, Tong & Pei, Pucheng, 2024. "Characterization and analysis of current distribution for oxygen starvation diagnosis: A research based on segmented PEMFC technology," Renewable Energy, Elsevier, vol. 237(PC).
    5. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    6. Stefanos Tzelepis & Kosmas A. Kavadias & George E. Marnellos, 2023. "A Three-Dimensional Simulation Model for Proton Exchange Membrane Fuel Cells with Conventional and Bimetallic Catalyst Layers," Energies, MDPI, vol. 16(10), pages 1-26, May.
    7. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    8. Teng Teng & Xin Zhang & Qicheng Xue & Baodi Zhang, 2024. "Research of Proton Exchange Membrane Fuel Cell Modeling on Concentration Polarization under Variable-Temperature Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-17, February.
    9. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    10. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    11. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
    12. Moazeni, Faegheh & Khazaei, Javad, 2020. "Electrochemical optimization and small-signal analysis of grid-connected polymer electrolyte membrane (PEM) fuel cells for renewable energy integration," Renewable Energy, Elsevier, vol. 155(C), pages 848-861.
    13. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    14. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    15. Dong Zhu & Yanbo Yang & Tiancai Ma, 2022. "Evaluation the Resistance Growth of Aged Vehicular Proton Exchange Membrane Fuel Cell Stack by Distribution of Relaxation Times," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
    16. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    17. Kwang-Hu Jung & Jung-Hyung Lee, 2024. "Determination of an Optimal Parameter Combination for Single PEMFC Using the Taguchi Method and Orthogonal Array," Energies, MDPI, vol. 17(7), pages 1-11, April.
    18. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    19. Zeng, Tao & Zhang, Caizhi & Hao, Dong & Cao, Dongpu & Chen, Jiawei & Chen, Jinrui & Li, Jin, 2020. "Data-driven approach for short-term power demand prediction of fuel cell hybrid vehicles," Energy, Elsevier, vol. 208(C).
    20. Yuan, Hao & Dai, Haifeng & Ming, Pingwen & Li, Sida & Wei, Xuezhe, 2022. "A new insight into the effects of agglomerate parameters on internal dynamics of proton exchange membrane fuel cell by an advanced impedance dimension model," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.