IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics030626192402213x.html
   My bibliography  Save this article

Load profiling and Monte Carlo simulation for load variety and variability in voltage optimization

Author

Listed:
  • Lin, Teng
  • Shang, Ce

Abstract

Voltage optimization has increasingly turned to the demand side for greater flexibility, a pursuit complicated by variety and variability of the loads. To address these challenges and maximize demand-side potential, a load profiling method embedded in a Monte Carlo framework is proposed in this study. The variety of loads is captured by load profiling that delineates the power system’s operational boundaries by identifying typical consumption patterns, which is achieved via a novel clustering technique that uniquely combines supervised and unsupervised learning. Unlike existing combinations of the two learning algorithms that use unsupervised learning to set the classes and supervised learning to fill in them in two separate steps, the newly developed clustering integrates both unsupervised and supervised learning exclusively for clustering. The variability of loads is represented by the active – reactive load curves, sampled by the Monte Carlo simulation to create multiple scenarios for the coordinated dispatch of active and reactive powers. This multi-scenario voltage optimization, enabled by the new load profiling technique, aims to enhance a wide range of power system operation and planning applications, particularly voltage evaluation and reactive power planning, which are utilized here to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Lin, Teng & Shang, Ce, 2025. "Load profiling and Monte Carlo simulation for load variety and variability in voltage optimization," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s030626192402213x
    DOI: 10.1016/j.apenergy.2024.124830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192402213X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Alonso, Monica & Amaris, Hortensia & Alvarez-Ortega, Carlos, 2012. "A multiobjective approach for reactive power planning in networks with wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 180-191.
    3. Iria, José & Heleno, Miguel & Cardoso, Gonçalo, 2019. "Optimal sizing and placement of energy storage systems and on-load tap changer transformers in distribution networks," Applied Energy, Elsevier, vol. 250(C), pages 1147-1157.
    4. Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
    5. Piscitelli, Marco Savino & Brandi, Silvio & Capozzoli, Alfonso, 2019. "Recognition and classification of typical load profiles in buildings with non-intrusive learning approach," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meiyan Gao & Zongmin Wang & Haibo Yang, 2022. "Review of Urban Flood Resilience: Insights from Scientometric and Systematic Analysis," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    2. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    3. Li, Wei & Han, Song & Guo, Xi & Xie, Shufan & Rong, Na & Zhang, Qingling, 2025. "Transient modeling and switching logic analysis of a power-electronic-assisted OLTC based Sen transformer," Applied Energy, Elsevier, vol. 378(PA).
    4. Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
    5. Wei, Jingdong & Zhang, Yao & Wang, Jianxue & Cao, Xiaoyu & Khan, Muhammad Armoghan, 2020. "Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method," Applied Energy, Elsevier, vol. 260(C).
    6. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    7. Dylan F. Jones & Graham Wall, 2016. "An extended goal programming model for site selection in the offshore wind farm sector," Annals of Operations Research, Springer, vol. 245(1), pages 121-135, October.
    8. Iria, José & Scott, Paul & Attarha, Ahmad, 2020. "Network-constrained bidding optimization strategy for aggregators of prosumers," Energy, Elsevier, vol. 207(C).
    9. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    10. Marija Miletić & Hrvoje Pandžić & Dechang Yang, 2020. "Operating and Investment Models for Energy Storage Systems," Energies, MDPI, vol. 13(18), pages 1-33, September.
    11. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    12. Panda, Ambarish & Tripathy, M., 2015. "Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm," Energy, Elsevier, vol. 93(P1), pages 816-827.
    13. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    14. Raza, Muhammad & Collados, Carlos & Gomis-Bellmunt, Oriol, 2017. "Reactive power management in an offshore AC network having multiple voltage source converters," Applied Energy, Elsevier, vol. 206(C), pages 793-803.
    15. Panda, Deepak Kumar & Das, Saptarshi, 2021. "Economic operational analytics for energy storage placement at different grid locations and contingency scenarios with stochastic wind profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
    17. Huang, Wenxin & Wang, Jianguo & Wang, Jianping & Zeng, Haiyan & Zhou, Mi & Cao, Jinxin, 2024. "EV charging load profile identification and seasonal difference analysis via charging sessions data of charging stations," Energy, Elsevier, vol. 288(C).
    18. Rongheng Lin & Shuo Chen & Zheyu He & Budan Wu & Hua Zou & Xin Zhao & Qiushuang Li, 2024. "Electricity Behavior Modeling and Anomaly Detection Services Based on a Deep Variational Autoencoder Network," Energies, MDPI, vol. 17(16), pages 1-20, August.
    19. Coelho, António & Iria, José & Soares, Filipe, 2021. "Network-secure bidding optimization of aggregators of multi-energy systems in electricity, gas, and carbon markets," Applied Energy, Elsevier, vol. 301(C).
    20. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s030626192402213x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.