IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924023572.html
   My bibliography  Save this article

TimeGPT in load forecasting: A large time series model perspective

Author

Listed:
  • Liao, Wenlong
  • Wang, Shouxiang
  • Yang, Dechang
  • Yang, Zhe
  • Fang, Jiannong
  • Rehtanz, Christian
  • Porté-Agel, Fernando

Abstract

Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce. Inspired by the outstanding performance of large language models (LLMs) in computer vision and natural language processing, this paper aims to discuss the potential of large time series models in load forecasting with scarce historical data. Specifically, the large time series model is constructed as a time series generative pre-trained transformer (TimeGPT), which is trained on massive and diverse time series datasets consisting of 100 billion data points (e.g., finance, transportation, banking, web traffic, weather, energy, healthcare, etc.). Then, the scarce historical load data is used to fine-tune the TimeGPT, which helps it to adapt to the data distribution and characteristics associated with load forecasting. Simulation results show that TimeGPT outperforms the popular benchmarks for load forecasting on several real datasets with scarce training samples, particularly for short look-ahead times. However, it cannot be guaranteed that TimeGPT is always superior to benchmarks for load forecasting with scarce data, since the performance of TimeGPT may be affected by the distribution differences between the load data and the training data. In practical applications, operators can divide the historical data into a training set and a validation set, and then use the validation set loss to decide whether TimeGPT is the best choice for a specific dataset.

Suggested Citation

  • Liao, Wenlong & Wang, Shouxiang & Yang, Dechang & Yang, Zhe & Fang, Jiannong & Rehtanz, Christian & Porté-Agel, Fernando, 2025. "TimeGPT in load forecasting: A large time series model perspective," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023572
    DOI: 10.1016/j.apenergy.2024.124973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Yuan & Hu, Zehuan & Shi, Shanrui & Chen, Wei-An & Liu, Mingzhe, 2024. "Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan," Applied Energy, Elsevier, vol. 359(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Mingzhe & Guo, Mingyue & Fu, Yangyang & O’Neill, Zheng & Gao, Yuan, 2024. "Expert-guided imitation learning for energy management: Evaluating GAIL’s performance in building control applications," Applied Energy, Elsevier, vol. 372(C).
    2. Gou, Liangjie & Yang, Zhaozhong & Min, Chao & Yi, Duo & Li, Xiaogang & Kong, Bing, 2024. "A novel domain adaptation method with physical constraints for shale gas production forecasting," Applied Energy, Elsevier, vol. 371(C).
    3. Sun, Luning & Hu, Zehuan & Mae, Masayuki & Imaizumi, Taiji, 2025. "Deep transfer learning strategy based on TimesBlock-CDAN for predicting thermal environment and air conditioner energy consumption in residential buildings," Applied Energy, Elsevier, vol. 381(C).
    4. Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe & Ruan, Yingjun, 2025. "A revolutionary neural network architecture with interpretability and flexibility based on Kolmogorov–Arnold for solar radiation and temperature forecasting," Applied Energy, Elsevier, vol. 378(PA).
    5. Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe, 2024. "Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning," Energy, Elsevier, vol. 302(C).
    6. Despotovic, Milan & Voyant, Cyril & Garcia-Gutierrez, Luis & Almorox, Javier & Notton, Gilles, 2024. "Solar irradiance time series forecasting using auto-regressive and extreme learning methods: Influence of transfer learning and clustering," Applied Energy, Elsevier, vol. 365(C).
    7. Chen, Wei-An & Lim, Jongyeon & Miyata, Shohei & Akashi, Yasunori, 2024. "Exploring the spatial distribution for efficient sewage heat utilization in urban areas using the urban sewage state prediction model," Applied Energy, Elsevier, vol. 360(C).
    8. Chen, Wei-An & Wang, Yi-Han & Chang, Hsin-Jou & Hwang, Ruey-Lung, 2024. "Development of a rapid assessment tool for integrating thermal comfort in early design stage of energy-efficient office buildings," Applied Energy, Elsevier, vol. 363(C).
    9. Zhang, Yuhang & Liu, Mingzhe & O'Neill, Zheng & Wen, Jin, 2024. "Temperature control strategies for fifth generation district heating and cooling systems: A review and case study," Applied Energy, Elsevier, vol. 376(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.