IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924023006.html
   My bibliography  Save this article

Life prediction of on-board supercapacitor energy storage system based on gate recurrent unit neural network using sparse monitoring data

Author

Listed:
  • Wei, Li
  • Wang, Yu
  • Lin, Tingrun
  • Huang, Xuelin
  • Yan, Rong

Abstract

With the increasing use of supercapacitor in transportation and energy sectors, service life prediction becomes an important aspect to consider. As the aging process of onboard supercapacitors is closely related to practical working conditions, the actual service life may be inconsistent with the cycle life measured in the laboratory. However, the low-quality onboard monitoring data recording the historical working conditions is usually sparse and fragmented, making it difficult to extract valuable information. In our previous study, we successfully obtained the characteristic parameters from sparse and fragmented data, whereas those characteristic parameters change periodically and couldn't be used directly for life prediction. In this paper, we firstly extract the degradation trend term of supercapacitor by a composite sine and polynomial time series decomposition model from the characteristic parameters. Secondly, in order to make up for the lack of data, a GRU network is designed to generate more sample data which is in consistent with historical data evolution trends. The combination of input characteristic variables including the extracted historical characteristic capacitance C, temperature T and the time fitting sequences CtD are selected to improve the accuracy of GRU predictions. The predictive error of the characteristic capacitance C is 2.36 %. Finally, the life prediction of on-board supercapacitors based on actual working conditions is realized.

Suggested Citation

  • Wei, Li & Wang, Yu & Lin, Tingrun & Huang, Xuelin & Yan, Rong, 2025. "Life prediction of on-board supercapacitor energy storage system based on gate recurrent unit neural network using sparse monitoring data," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023006
    DOI: 10.1016/j.apenergy.2024.124917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Muzaffar, Aqib & Ahamed, M. Basheer & Deshmukh, Kalim & Thirumalai, Jagannathan, 2019. "A review on recent advances in hybrid supercapacitors: Design, fabrication and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 123-145.
    2. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
    3. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    4. Feng, Zhong-kai & Huang, Qing-qing & Niu, Wen-jing & Yang, Tao & Wang, Jia-yang & Wen, Shi-ping, 2022. "Multi-step-ahead solar output time series prediction with gate recurrent unit neural network using data decomposition and cooperation search algorithm," Energy, Elsevier, vol. 261(PA).
    5. Pepe, Simona & Ciucci, Francesco, 2023. "Long-range battery state-of-health and end-of-life prediction with neural networks and feature engineering," Applied Energy, Elsevier, vol. 350(C).
    6. Che, Yunhong & Deng, Zhongwei & Li, Penghua & Tang, Xiaolin & Khosravinia, Kavian & Lin, Xianke & Hu, Xiaosong, 2022. "State of health prognostics for series battery packs: A universal deep learning method," Energy, Elsevier, vol. 238(PB).
    7. Li, Shuangqi & He, Hongwen & Zhao, Pengfei & Cheng, Shuang, 2022. "Health-Conscious vehicle battery state estimation based on deep transfer learning," Applied Energy, Elsevier, vol. 316(C).
    8. Zhonghua Yun & Wenhu Qin & Weipeng Shi & Peng Ping, 2020. "State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach," Energies, MDPI, vol. 13(18), pages 1-22, September.
    9. Guo, Fei & Wu, Xiongwei & Liu, Lili & Ye, Jilei & Wang, Tao & Fu, Lijun & Wu, Yuping, 2023. "Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network," Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, S. & Budarapu, P.R., 2024. "Deep machine learning approaches for battery health monitoring," Energy, Elsevier, vol. 300(C).
    2. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    3. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Lu, Jia & Cheng, Chuntian, 2023. "Short-term coordinated hybrid hydro-wind-solar optimal scheduling model considering multistage section restrictions," Renewable Energy, Elsevier, vol. 217(C).
    4. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    5. Angel Recalde & Ricardo Cajo & Washington Velasquez & Manuel S. Alvarez-Alvarado, 2024. "Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 17(13), pages 1-39, June.
    6. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    7. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    8. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    10. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    11. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    13. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
    14. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    15. Jiang, Zhuosheng & Zhai, Shengli & Huang, Mingzhi & Songsiriritthigul, Prayoon & Aung, Su Htike & Oo, Than Zaw & Luo, Min & Chen, Fuming, 2021. "3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics," Energy, Elsevier, vol. 227(C).
    16. Ganesan Sriram & Mahaveer Kurkuri & Tae Hwan Oh, 2023. "Recent Trends in Highly Porous Structured Carbon Electrodes for Supercapacitor Applications: A Review," Energies, MDPI, vol. 16(12), pages 1-36, June.
    17. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    19. Donghun Wang & Jihwan Hwang & Jonghyun Lee & Minchan Kim & Insoo Lee, 2023. "Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    20. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.