IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics030626192401047x.html
   My bibliography  Save this article

Carbon dioxide hydrate crystallization thickening & morphology in a micro-confined environment for carbon capture & sequestration processes

Author

Listed:
  • Wadsworth, Lindsey A.
  • Balke, Jason G.
  • Hartman, Ryan L.
  • Koh, Carolyn A.

Abstract

Carbon dioxide capture and sequestration (CCS) are critical processes that are necessary to mitigate the impacts of climate change. In pipelines used for CCS and for ocean sequestration, the formation of CO2 hydrates can occur and be detrimental to the safety and integrity of the CCS equipment and process. Understanding the crystallization thickening behavior of CO2 hydrates is vital for understanding hydrate formation in CO2 pipelines and in other CCS applications, such as sequestration and CO2 capture or storage. In this study, a microfluidic chip reactor was used to crystalize and thicken CO2 hydrates at the channel walls. The morphology of the CO2 hydrates was visually analyzed and quantified using in situ Raman spectroscopy. Two hydrate layers were consistently observed. An annealed, dense layer of hydrate shared an interface with liquid water, while a porous hydrate layer shared an interface with CO2 gas. Capillary-like pore spaces could be observed in the porous layer, which confirms one proposed mechanism for hydrate film thickening. Subcooling (0.5–1.5 K), pressure (2.51, 3.10 MPa), and flow rate of CO2 (0.167, 1.67 mm3/s) were studied for their impact on the overall CO2 hydrate film thickness over time. Over the ranges of these chosen parameters, only CO2 flow rate was found to have a significant impact on the thickening of CO2 hydrates, and a higher flow rate led to thicker crystalline hydrate films. A first principles mass transfer model for hydrate film thickness was developed and applied to the measurement data collected for overall hydrate film thickness.

Suggested Citation

  • Wadsworth, Lindsey A. & Balke, Jason G. & Hartman, Ryan L. & Koh, Carolyn A., 2024. "Carbon dioxide hydrate crystallization thickening & morphology in a micro-confined environment for carbon capture & sequestration processes," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s030626192401047x
    DOI: 10.1016/j.apenergy.2024.123664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192401047X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Uchida, Tsutomu & Kawabata, Jun'ichi, 1997. "Measurements of mechanical properties of the liquid CO2-water-CO2-hydrate system," Energy, Elsevier, vol. 22(2), pages 357-361.
    2. Lars Ingolf Eide & Melissa Batum & Tim Dixon & Zabia Elamin & Arne Graue & Sveinung Hagen & Susan Hovorka & Bamshad Nazarian & Pål Helge Nøkleby & Geir Inge Olsen & Philip Ringrose & Raphael Augusto M, 2019. "Enabling Large-Scale Carbon Capture, Utilisation, and Storage (CCUS) Using Offshore Carbon Dioxide (CO 2 ) Infrastructure Developments—A Review," Energies, MDPI, vol. 12(10), pages 1-21, May.
    3. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    2. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    3. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    4. Tsypkin, G.G., 2021. "Analytical study of CO2–CH4 exchange in hydrate at high rates of carbon dioxide injection into a reservoir saturated with methane hydrate and gaseous methane," Energy, Elsevier, vol. 233(C).
    5. Lin Liu & Xiumei Zhang & Xiuming Wang, 2021. "Wave Propagation Characteristics in Gas Hydrate-Bearing Sediments and Estimation of Hydrate Saturation," Energies, MDPI, vol. 14(4), pages 1-21, February.
    6. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    7. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    8. Chen, Lin & Feng, Yongchang & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2018. "Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: The case of Nankai Trough Japan," Energy, Elsevier, vol. 143(C), pages 128-140.
    9. Alberto Maria Gambelli & Xhino Rushani & Daniela Pezzolla & Federico Rossi & Giovanni Gigliotti, 2023. "Production of CO 2 Hydrates in Aqueous Mixtures Having (NH 4 ) 2 SO 4 at Different Concentrations; Definition of Consequences on the Process Evolution, Quantification of CO 2 Captured and Validation o," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    10. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    11. Jyoti Shanker Pandey & Saad Khan & Nicolas von Solms, 2022. "Screening of Low-Dosage Methanol as a Hydrate Promoter," Energies, MDPI, vol. 15(18), pages 1-20, September.
    12. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    13. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    14. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    15. Sabla Y. Alnouri & Dhabia M. Al-Mohannadi, 2020. "Exploring Tradeoffs in Merged Pipeline Infrastructure for Carbon Dioxide Integration Networks," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    16. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    18. Dong, Lin & Wu, Nengyou & Leonenko, Yuri & Wan, Yizhao & Zhang, Yajuan & Li, Yanlong, 2024. "Numerical analysis on hydrate production performance with multi-well systems: Synergistic effect of adjacent wells and implications on field exploitation," Energy, Elsevier, vol. 290(C).
    19. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    20. Lin, Yanwen & Hao, Yongchao & Shi, Qiao & Xu, Yihua & Song, Zixuan & Zhou, Ziyue & Fu, Yuequn & Zhang, Zhisen & Wu, Jianyang, 2024. "Enhanced formation of methane hydrates via graphene oxide: Machine learning insights from molecular dynamics simulations," Energy, Elsevier, vol. 289(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s030626192401047x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.