IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v332y2023ics0306261922017962.html
   My bibliography  Save this article

Combining looped heat pipe and thermoelectric generator module to pursue data center servers with possible power usage effectiveness less than 1

Author

Listed:
  • Zhou, Haojie
  • Tian, Tong
  • Wang, Xinyue
  • Li, Ji

Abstract

With the rapid increase in the power consumption of global data centers, it is becoming more and more important to reduce the power usage effectiveness (PUE) value, which is a key metric for evaluating the energy efficiencies of data centers. The previously proposed advanced thermal management methods can make PUE values very close to 1. To further reduce the PUE of the air-cooled data center, a novel looped heat pipe (LHP) and thermoelectric generator (TEG) coupled system based on a series–parallel scheme was first proposed. Attributed to the passive heat dissipation apparatus with extremely low thermal resistance and high-efficiency thermoelectric power generation devices as adopted in this design, the power output, especially the net power output, could be greatly improved compared to the power outputs achieved in previous research, and an electrical power of more than several watts was obtained while cooling a server CPU, which enable servers possibly with PUE values less than one. The results showed that, under the condition that the junction temperature was below 85 °C, by using nine 40 mm TEGs, the minimum PUE of 0.997 was achieved at a Reynolds number of 930 and a heat load of 155 W.

Suggested Citation

  • Zhou, Haojie & Tian, Tong & Wang, Xinyue & Li, Ji, 2023. "Combining looped heat pipe and thermoelectric generator module to pursue data center servers with possible power usage effectiveness less than 1," Applied Energy, Elsevier, vol. 332(C).
  • Handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017962
    DOI: 10.1016/j.apenergy.2022.120539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2015. "Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration," Applied Energy, Elsevier, vol. 139(C), pages 384-397.
    2. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    3. He, Wei & Su, Yuehong & Riffat, S.B. & Hou, JinXin & Ji, Jie, 2011. "Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit," Applied Energy, Elsevier, vol. 88(12), pages 5083-5089.
    4. Zakarya, Muhammad, 2018. "Energy, performance and cost efficient datacenters: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 363-385.
    5. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    6. Gao, Yuanzhi & Wang, Changling & Wu, Dongxu & Dai, Zhaofeng & Chen, Bo & Zhang, Xiaosong, 2022. "A numerical evaluation of the bifacial concentrated PV-STEG system cooled by mini-channel heat sink," Renewable Energy, Elsevier, vol. 192(C), pages 716-730.
    7. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    8. Wang, Xinyue & Liu, Yang & Tian, Tong & Li, Ji, 2022. "Directly air-cooled compact looped heat pipe module for high power servers with extremely low power usage effectiveness," Applied Energy, Elsevier, vol. 319(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    2. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    3. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    4. Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
    5. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
    6. Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    7. Wang, Wei & Abdolrashidi, Amirali & Yu, Nanpeng & Wong, Daniel, 2019. "Frequency regulation service provision in data center with computational flexibility," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    9. Graamans, Luuk & Tenpierik, Martin & van den Dobbelsteen, Andy & Stanghellini, Cecilia, 2020. "Plant factories: Reducing energy demand at high internal heat loads through façade design," Applied Energy, Elsevier, vol. 262(C).
    10. Rickard Brännvall & Jonas Gustafsson & Fredrik Sandin, 2023. "Modular and Transferable Machine Learning for Heat Management and Reuse in Edge Data Centers," Energies, MDPI, vol. 16(5), pages 1-24, February.
    11. Rostirolla, G. & Grange, L. & Minh-Thuyen, T. & Stolf, P. & Pierson, J.M. & Da Costa, G. & Baudic, G. & Haddad, M. & Kassab, A. & Nicod, J.M. & Philippe, L. & Rehn-Sonigo, V. & Roche, R. & Celik, B. &, 2022. "A survey of challenges and solutions for the integration of renewable energy in datacenters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Olle Högblom & Ronnie Andersson, 2020. "Multiphysics CFD Simulation for Design and Analysis of Thermoelectric Power Generation," Energies, MDPI, vol. 13(17), pages 1-15, August.
    13. Lan, Yun Cheng & Li, Cheng & Wang, Sui Lin, 2019. "Parabolic antenna snow melting and removal using waste heat from the transmitter room," Energy, Elsevier, vol. 181(C), pages 738-744.
    14. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    15. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    16. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    17. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    18. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    19. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    20. Tong Lei & Zuoqin Qian & Jie Ren, 2023. "Performance Evaluation of LiBr-H 2 O and LiCl-H 2 O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.