IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920313453.html
   My bibliography  Save this article

A comparative study on clean ammonia production using chemical looping based technology

Author

Listed:
  • Lee Pereira, Reinaldo Juan
  • Argyris, Panagiotis Alexandros
  • Spallina, Vincenzo

Abstract

A comparative assessment of NH3 production using a chemical looping based process is carried out for 500,000 tons per year with inherently integrated CO2 separation using natural gas as feedstock. The chemical looping process, with dynamically operated packed bed reactors, has been modelled, designed and simulated to accomplish steady-state operation and the results are used to carry out the full-scale energy analysis and costing. Two process heat management strategies have been considered on the basis of the oxygen carrier reactivity. With respect to the commercial process for natural gas-to-ammonia, the chemical looping based process replaces the syngas generation and purification units while the NH3 synthesis and purification units remain unvaried. The chemical looping plants show a yield of 1.54–1.63 kgNH3/kgNG. The overall primary energy consumption to separate CO2 is 0.78–2.32 MJLHV/kgCO2 to achieve a carbon capture rate >99% compared to 73% achieved by the reference plant with integrated carbon capture and storage. The final cost of NH3 production is slightly lower than the reference technologies because of a decreased plant cost (19% lower) in particular for the reforming unit and CO2 separation. As a result, by using chemical looping the cost of CO2 avoidance is negative (−1 to −5 $/tonCO2) and strongly dependent on the cost of the oxygen carriers and chemical looping reactors.

Suggested Citation

  • Lee Pereira, Reinaldo Juan & Argyris, Panagiotis Alexandros & Spallina, Vincenzo, 2020. "A comparative study on clean ammonia production using chemical looping based technology," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313453
    DOI: 10.1016/j.apenergy.2020.115874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920313453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    2. Martínez, I. & Romano, M.C. & Fernández, J.R. & Chiesa, P. & Murillo, R. & Abanades, J.C., 2014. "Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop," Applied Energy, Elsevier, vol. 114(C), pages 192-208.
    3. Nazir, Shareq Mohd & Cloete, Jan Hendrik & Cloete, Schalk & Amini, Shahriar, 2019. "Efficient hydrogen production with CO2 capture using gas switching reforming," Energy, Elsevier, vol. 185(C), pages 372-385.
    4. Medrano, J.A. & Hamers, H.P. & Williams, G. & van Sint Annaland, M. & Gallucci, F., 2015. "NiO/CaAl2O4 as active oxygen carrier for low temperature chemical looping applications," Applied Energy, Elsevier, vol. 158(C), pages 86-96.
    5. Tang, Mingchen & Xu, Long & Fan, Maohong, 2015. "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review," Applied Energy, Elsevier, vol. 151(C), pages 143-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Jing & Xiong, Chuhao & Feng, Mingqian & Wu, Ye & Liu, Dong, 2022. "Utilization of carbon-based energy as raw material instead of fuel with low CO2 emissions: Energy analyses and process integration of chemical looping ammonia generation," Applied Energy, Elsevier, vol. 312(C).
    2. Xiong, Chuhao & Wu, Ye & Feng, Mingqian & Fang, Jing & Liu, Dong & Shen, Laihong & Argyle, Morris D. & A. M. Gasem, Khaled & Fan, Maohong, 2022. "High thermal stability Si-Al based N-carrier for efficient and stable chemical looping ammonia generation," Applied Energy, Elsevier, vol. 323(C).
    3. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhe & Fan, Weiyu & Zhang, Guangqing & Dong, Shuang, 2016. "Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production," Applied Energy, Elsevier, vol. 168(C), pages 1-12.
    2. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    3. Huang, Jijiang & Liu, Wen & Hu, Wenting & Metcalfe, Ian & Yang, Yanhui & Liu, Bin, 2019. "Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications," Applied Energy, Elsevier, vol. 236(C), pages 635-647.
    4. Antzara, Andy & Heracleous, Eleni & Lemonidou, Angeliki A., 2016. "Energy efficient sorption enhanced-chemical looping methane reforming process for high-purity H2 production: Experimental proof-of-concept," Applied Energy, Elsevier, vol. 180(C), pages 457-471.
    5. Cheng, Xianming & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Zhouhang & Long, Yanhui & Zheng, Min & Tian, Dong & Wang, Hua, 2018. "Enhanced performance of chemical looping combustion of methane by combining oxygen carriers via optimizing the stacking sequences," Applied Energy, Elsevier, vol. 230(C), pages 696-711.
    6. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    8. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    9. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    10. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    11. Fernández, J.R. & Abanades, J.C., 2014. "Conceptual design of a Ni-based chemical looping combustion process using fixed-beds," Applied Energy, Elsevier, vol. 135(C), pages 309-319.
    12. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    13. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    15. Xue, Jingjing & Ahmadian, Reza & Jones, Owen, 2020. "Genetic Algorithm in Tidal Range Schemes’ Optimisation," Energy, Elsevier, vol. 200(C).
    16. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    17. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    18. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    19. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    20. Vlad Mureșan & Mihaela-Ligia Ungureșan & Mihail Abrudean & Honoriu Vălean & Iulia Clitan & Roxana Motorga & Emilian Ceuca & Marius Fișcă, 2021. "AI versus Classic Methods in Modelling Isotopic Separation Processes: Efficiency Comparison," Mathematics, MDPI, vol. 9(23), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920313453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.