IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v273y2020ics030626192030742x.html
   My bibliography  Save this article

Molar-volume asymmetry enabled low-frequency mechanical energy harvesting in electrochemical cells

Author

Listed:
  • Xue, Weijiang
  • Chen, Tianwu
  • Ren, Zhichu
  • Kim, So Yeon
  • Chen, Yuming
  • Zhang, Pengcheng
  • Zhang, Sulin
  • Li, Ju

Abstract

In an electrochemical cell, unequal mechanical work due to mass action into the two electrodes can generate chemical potential difference that drives Li+ flow across the electrolyte, constituting the fundamental basis for electrochemically driven mechanical energy harvesting. The diffusional time scale inherent to the electrochemical setting renders efficient low-frequency energy conversion. From thermodynamic analyses we reveal that there exist two distinct paradigms for electrochemically driven mechanical energy harvesting, enabled by pressure or molar-volume asymmetry of the electrodes. Guided by the thermodynamic framework, we prototype the first molar-volume asymmetry based energy harvester consisting of an intercalation-conversion electrode couple. The harvester can operate under globally uniform pressure and deliver a high power density of ~0.90 µW cm−2 with long-term durability. Under an open-circuit condition, the device operates in a novel ratchetting mode under which compression/decompression cycling causes continuous rise in voltage, yielding a blasting power output of ~143.60 µW cm−2. Such a ratchet effect arises due to the chemomechanically induced residual stress in the electrodes during cycling. Compared to the pressure-asymmetry based harvesters, the new harvester offers high scalability, processability, safety, and large working area, which make it easy to increase the output power through synchronizing multilayer with large areas. Our device enables mechanical energy harvesting from low-frequency resources, including human daily activities.

Suggested Citation

  • Xue, Weijiang & Chen, Tianwu & Ren, Zhichu & Kim, So Yeon & Chen, Yuming & Zhang, Pengcheng & Zhang, Sulin & Li, Ju, 2020. "Molar-volume asymmetry enabled low-frequency mechanical energy harvesting in electrochemical cells," Applied Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:appene:v:273:y:2020:i:c:s030626192030742x
    DOI: 10.1016/j.apenergy.2020.115230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192030742X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    2. Li, Meng & Jing, Xingjian, 2019. "Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting," Applied Energy, Elsevier, vol. 255(C).
    3. Khalili, Mohamadreza & Biten, Ayetullah B. & Vishwakarma, Gopal & Ahmed, Sara & Papagiannakis, A.T., 2019. "Electro-mechanical characterization of a piezoelectric energy harvester," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Trinh, V.L. & Chung, C.K., 2018. "Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure," Applied Energy, Elsevier, vol. 213(C), pages 353-365.
    5. Jaegeon Ryu & Tianwu Chen & Taesoo Bok & Gyujin Song & Jiyoung Ma & Chihyun Hwang & Langli Luo & Hyun-Kon Song & Jaephil Cho & Chongmin Wang & Sulin Zhang & Soojin Park, 2018. "Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    6. Dudem, Bhaskar & Kim, Dong Hyun & Bharat, L. Krishna & Yu, Jae Su, 2018. "Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 865-874.
    7. Sangtae Kim & Soon Ju Choi & Kejie Zhao & Hui Yang & Giorgia Gobbi & Sulin Zhang & Ju Li, 2016. "Electrochemically driven mechanical energy harvesting," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    8. Zou, Hong-Xiang & Zhao, Lin-Chuan & Gao, Qiu-Hua & Zuo, Lei & Liu, Feng-Rui & Tan, Ting & Wei, Ke-Xiang & Zhang, Wen-Ming, 2019. "Mechanical modulations for enhancing energy harvesting: Principles, methods and applications," Applied Energy, Elsevier, vol. 255(C).
    9. Weijiang Xue & Zhe Shi & Liumin Suo & Chao Wang & Ziqiang Wang & Haozhe Wang & Kang Pyo So & Andrea Maurano & Daiwei Yu & Yuming Chen & Long Qie & Zhi Zhu & Guiyin Xu & Jing Kong & Ju Li, 2019. "Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities," Nature Energy, Nature, vol. 4(5), pages 374-382, May.
    10. Jong Kyun Moon & Jaeki Jeong & Dongyun Lee & Hyuk Kyu Pak, 2013. "Electrical power generation by mechanically modulating electrical double layers," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
    2. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    3. Niloufar Zabihi & Mohamed Saafi, 2020. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    4. Cao, Dong-Xing & Lu, Yi-Ming & Lai, Siu-Kai & Mao, Jia-Jia & Guo, Xiang-Ying & Shen, Yong-Jun, 2022. "A novel soft encapsulated multi-directional and multi-modal piezoelectric vibration energy harvester," Energy, Elsevier, vol. 254(PB).
    5. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    6. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
    7. Moradi-Dastjerdi, Rasool & Behdinan, Kamran, 2021. "Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate," Applied Energy, Elsevier, vol. 293(C).
    8. Sun, Rujie & Li, Qinyu & Yao, Jianfei & Scarpa, Fabrizio & Rossiter, Jonathan, 2020. "Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures," Applied Energy, Elsevier, vol. 264(C).
    9. Beladipour, M. & Soleymani, M. & Abolmasoumi, Amir H. & Ebadi, M., 2022. "Energy regeneration of active pendulum system in tall buildings subjected to wind and seismic loads," Applied Energy, Elsevier, vol. 328(C).
    10. Zhang, Ying & Wang, Wei & Xie, Junxiao & Lei, Yaguo & Cao, Junyi & Xu, Ye & Bader, Sebastian & Bowen, Chris & Oelmann, Bengt, 2022. "Enhanced variable reluctance energy harvesting for self-powered monitoring," Applied Energy, Elsevier, vol. 321(C).
    11. Ruichen Wang & Paul Allen & Yang Song & Zhiwei Wang, 2022. "Modelling and Analysis of Power-Regenerating Potential for High-Speed Train Suspensions," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    12. Li, Rongchun & Fan, Kangqi & Ma, Xiaoyu & Wen, Tao & Liu, Qingli & Gao, Xianming & Zhu, Jiuling & Zhang, Yan, 2023. "A rotational energy harvester with a semi-flexible one-way clutch for capturing low-frequency vibration energy," Energy, Elsevier, vol. 281(C).
    13. Miao, Gang & Fang, Shitong & Wang, Suo & Zhou, Shengxi, 2022. "A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism," Applied Energy, Elsevier, vol. 305(C).
    14. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    15. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    16. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    17. Patnam, Harishkumarreddy & Dudem, Bhaskar & Graham, Sontyana Adonijah & Yu, Jae Su, 2021. "High-performance and robust triboelectric nanogenerators based on optimal microstructured poly(vinyl alcohol) and poly(vinylidene fluoride) polymers for self-powered electronic applications," Energy, Elsevier, vol. 223(C).
    18. Chenchen Li & Shifu Liu & Hongduo Zhao & Yu Tian, 2022. "Performance Assessment and Comparison of Two Piezoelectric Energy Harvesters Developed for Pavement Application: Case Study," Sustainability, MDPI, vol. 14(2), pages 1-11, January.
    19. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    20. Gunn, B. & Alevras, P. & Flint, J.A. & Fu, H. & Rothberg, S.J. & Theodossiades, S., 2021. "A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:273:y:2020:i:c:s030626192030742x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.