IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v269y2020ics0306261920306875.html
   My bibliography  Save this article

An innovative building envelope with variable thermal performance for passive heating systems

Author

Listed:
  • Si, Pengfei
  • Lv, Yuexia
  • Rong, Xiangyang
  • Shi, Lijun
  • Yan, Jinyue
  • Wang, Xin

Abstract

The integration of passive solar heating strategies into the existing buildings has been considered as an innovative and effective approach to mitigate energy and environmental issues. To balance the trade-off between solar heat gain and thermal insulation in traditional passive solar systems, this paper presented an innovative envelope with variable thermal performance for passive solar buildings. Field measurement was carried out to validate the feasibility of the transparent building envelope under step control operation strategy to building comfortable indoor environment especially in cold plateau areas. The experimental results show that, even under harsh climate conditions, the application of the proposed building envelope effectively increases the heat gain and maintains indoor temperature at a relatively comfortable level in the studied case. The average indoor air temperature of the studied rooms is at 13.0–14.0 °C, with the highest temperature up to 21 °C. Numerical simulation by DesignBuilder software was further developed to exploit the efficiency of the proposed building envelope under the step control operation strategy for increasing the indoor temperature. The simulation results show the same tendency with the filed measurement results. The operation strategy of opening indoor window at 10:00 am and closing at 5:00 pm can achieve the maximization of solar gain, significantly increasing the indoor temperature. Attributed to good balance between solar heat gain coefficient and thermal resistance, the average temperature of the room with the proposed envelope mode is 2.0 °C (sunny day) and 1.5 °C (cloudy day) higher than that of another three passive solar envelope operation modes, respectively. In general, the proposed building envelope with variable thermal performance has high potential to improve the indoor thermal environment in cold plateau areas at low cost.

Suggested Citation

  • Si, Pengfei & Lv, Yuexia & Rong, Xiangyang & Shi, Lijun & Yan, Jinyue & Wang, Xin, 2020. "An innovative building envelope with variable thermal performance for passive heating systems," Applied Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306875
    DOI: 10.1016/j.apenergy.2020.115175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Bendong & Hou, Jingxin & He, Wei & Liu, Shanshan & Hu, Zhongting & Ji, Jie & Chen, Hongbing & Xu, Gang, 2018. "Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification," Applied Energy, Elsevier, vol. 226(C), pages 365-380.
    2. Ma, Qingsong & Fukuda, Hiroatsu & Lee, Myonghyang & Kobatake, Takumi & Kuma, Yuko & Ozaki, Akihito, 2018. "Study on the utilization of heat in the mechanically ventilated Trombe wall in a house with a central air conditioning and air circulation system," Applied Energy, Elsevier, vol. 222(C), pages 861-871.
    3. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.
    4. Rabani, Mehran & Kalantar, Vali & Rabani, Mehrdad, 2017. "Heat transfer analysis of a Trombe wall with a projecting channel design," Energy, Elsevier, vol. 134(C), pages 943-950.
    5. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    6. Si, Pengfei & Feng, Ya & Lv, Yuexia & Rong, Xiangyang & Pan, Yungang & Liu, Xichen & Yan, Jinyue, 2017. "An optimization method applied to active solar energy systems for buildings in cold plateau areas – The case of Lhasa," Applied Energy, Elsevier, vol. 194(C), pages 487-498.
    7. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    8. Lv, Yuexia & Si, Pengfei & Rong, Xiangyang & Yan, Jinyue & Feng, Ya & Zhu, Xiaohong, 2018. "Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection," Applied Energy, Elsevier, vol. 219(C), pages 11-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Guangpeng & Wu, Huijun & Liu, Jia & Liu, Yanchen & Ding, Yujie & Huang, Huakun, 2024. "A review on switchable building envelopes for low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Gong, Qipeng & Kou, Fangcheng & Sun, Xiaoyu & Zou, Yu & Mo, Jinhan & Wang, Xin, 2022. "Towards zero energy buildings: A novel passive solar house integrated with flat gravity-assisted heat pipes," Applied Energy, Elsevier, vol. 306(PA).
    3. Shi, Shaohang & Zhu, Ning & Wu, Shuangdui & Song, Yehao, 2024. "Evaluation and analysis of transmitted daylight color quality for different colored semi-transparent PV glazing," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    3. Hong, Xiaoqiang & Leung, Michael K.H. & He, Wei, 2019. "Effective use of venetian blind in Trombe wall for solar space conditioning control," Applied Energy, Elsevier, vol. 250(C), pages 452-460.
    4. Xiao, Yuling & Yang, Qianli & Fei, Fan & Li, Kai & Jiang, Yijun & Zhang, Yuanwen & Fukuda, Hiroatsu & Ma, Qingsong, 2024. "Review of Trombe wall technology: Trends in optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    5. Przemysław Miąsik & Joanna Krasoń, 2021. "Thermal Efficiency of Trombe Wall in the South Facade of a Frame Building," Energies, MDPI, vol. 14(3), pages 1-23, January.
    6. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    7. Qingsong Ma & Hiroatsu Fukuda & Takumi Kobatake & Myonghyang Lee, 2017. "Study of a Double-Layer Trombe Wall Assisted by a Temperature-Controlled DC Fan for Heating Seasons," Sustainability, MDPI, vol. 9(12), pages 1-12, November.
    8. Wu, Shuang-Ying & Xu, Li & Xiao, Lan, 2020. "Air purification and thermal performance of photocatalytic-Trombe wall based on multiple physical fields coupling," Renewable Energy, Elsevier, vol. 148(C), pages 338-348.
    9. Zhang, Guangpeng & Wu, Huijun & Liu, Jia & Liu, Yanchen & Ding, Yujie & Huang, Huakun, 2024. "A review on switchable building envelopes for low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    10. Rabani, Mehran, 2022. "Experimental comparison of energy and exergy analysis of a new designed and a Normal Trombe wall," Energy, Elsevier, vol. 260(C).
    11. Xie, Hao & Yu, Bendong & Wang, Jun & Ji, Jie, 2021. "A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation," Applied Energy, Elsevier, vol. 291(C).
    12. Ma, Qingsong & Fukuda, Hiroatsu & Lee, Myonghyang & Kobatake, Takumi & Kuma, Yuko & Ozaki, Akihito, 2018. "Study on the utilization of heat in the mechanically ventilated Trombe wall in a house with a central air conditioning and air circulation system," Applied Energy, Elsevier, vol. 222(C), pages 861-871.
    13. Li, Niansi & Cao, Xuhui & Zhang, Guoji & Wang, Yiting & Hu, Xuan & Liu, Jin & Yu, Bendong & Ji, Jie & Liu, Xiaoyong, 2024. "The experimental and numerical study on a novel all-day PCM thermal-catalytic purified Trombe wall in winter," Energy, Elsevier, vol. 299(C).
    14. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    15. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    16. Enghok Leang & Pierre Tittelein & Laurent Zalewski & Stéphane Lassue, 2020. "Impact of a Composite Trombe Wall Incorporating Phase Change Materials on the Thermal Behavior of an Individual House with Low Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-32, September.
    17. Lech Lichołai & Aleksander Starakiewicz & Joanna Krasoń & Przemysław Miąsik, 2021. "The Influence of Glazing on the Functioning of a Trombe Wall Containing a Phase Change Material," Energies, MDPI, vol. 14(17), pages 1-19, August.
    18. Askari, Minoo & Jahangir, Mohammad Hossein, 2023. "Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials," Energy, Elsevier, vol. 284(C).
    19. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    20. Zheng, Xinyao & Zhou, Yuekuan, 2024. "Dynamic heat-transfer mechanism and performance analysis of an integrated Trombe wall with radiant cooling for natural cooling energy harvesting and air-conditioning," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s0306261920306875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.