IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261919321683.html
   My bibliography  Save this article

Robust chance-constrained programming approach for the planning of fast-charging stations in electrified transportation networks

Author

Listed:
  • Zhou, Bo
  • Chen, Guo
  • Song, Qiankun
  • Dong, Zhao Yang

Abstract

In this paper, a bi-level programming model is established to address the planning issues of fast-charging stations in electrified transportation networks with the consideration of uncertain charging demands. The capacitated flow refueling location model is considered in the upper level to minimize the planning cost of fast-charging stations while the traffic assignment model is utilized in the lower level to determine the spatial and temporal distribution of plug-in electric vehicle flows over entire transportation networks. Such bi-level model unveils the inherent relationship among charging demands, electrical demands and the spatial and temporal distribution of plug-in electric vehicle flows. Robust chance constraints are formulated to characterize the service abilities of fast-charging stations under distribution-free uncertain charging demands, where the ambiguity set is constructed to estimate the potential values of the uncertainties based on their moment-based information, such that the robust chance constraints can exactly be reduced to mixed integer linear constraints. By introducing new variables, the bi-level model is then reformulated into a single-level mixed integer second-order cone programming model so as to be solved via off-the-shelf solvers, which guarantee the optimality of the solution. A case study is conducted to illustrate the effectiveness of the proposed planning model, which reveals three critical factors that significantly impact the planning outcomes.

Suggested Citation

  • Zhou, Bo & Chen, Guo & Song, Qiankun & Dong, Zhao Yang, 2020. "Robust chance-constrained programming approach for the planning of fast-charging stations in electrified transportation networks," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321683
    DOI: 10.1016/j.apenergy.2019.114480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919321683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    2. He, Fang & Wu, Di & Yin, Yafeng & Guan, Yongpei, 2013. "Optimal deployment of public charging stations for plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 87-101.
    3. Hung, Duong Quoc & Dong, Zhao Yang & Trinh, Hieu, 2016. "Determining the size of PHEV charging stations powered by commercial grid-integrated PV systems considering reactive power support," Applied Energy, Elsevier, vol. 183(C), pages 160-169.
    4. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    5. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
    6. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    7. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    8. Xie, Chi & Wang, Tong-Gen & Pu, Xiaoting & Karoonsoontawong, Ampol, 2017. "Path-constrained traffic assignment: Modeling and computing network impacts of stochastic range anxiety," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 136-157.
    9. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Funke, Simon Árpád & Plötz, Patrick & Wietschel, Martin, 2019. "Invest in fast-charging infrastructure or in longer battery ranges? A cost-efficiency comparison for Germany," Applied Energy, Elsevier, vol. 235(C), pages 888-899.
    11. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    12. Xu, Min & Meng, Qiang & Liu, Kai & Yamamoto, Toshiyuki, 2017. "Joint charging mode and location choice model for battery electric vehicle users," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 68-86.
    13. Luo, Lizi & Gu, Wei & Zhou, Suyang & Huang, He & Gao, Song & Han, Jun & Wu, Zhi & Dou, Xiaobo, 2018. "Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities," Applied Energy, Elsevier, vol. 226(C), pages 1087-1099.
    14. Shabbir, Wassif & Evangelou, Simos A., 2019. "Threshold-changing control strategy for series hybrid electric vehicles," Applied Energy, Elsevier, vol. 235(C), pages 761-775.
    15. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    16. Fang, Xin & Hodge, Bri-Mathias & Jiang, Huaiguang & Zhang, Yingchen, 2019. "Decentralized wind uncertainty management: Alternating direction method of multipliers based distributionally-robust chance constrained optimal power flow," Applied Energy, Elsevier, vol. 239(C), pages 938-947.
    17. Fang, Xin & Cui, Hantao & Yuan, Haoyu & Tan, Jin & Jiang, Tao, 2019. "Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yanxia & Gan, Shaojun & Li, Kang & Chen, Yanyan, 2022. "Planning for low-carbon energy-transportation system at metropolitan scale: A case study of Beijing, China," Energy, Elsevier, vol. 246(C).
    2. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).
    3. Luyun Wang & Bo Zhou, 2023. "Optimal Planning of Electric Vehicle Fast-Charging Stations Considering Uncertain Charging Demands via Dantzig–Wolfe Decomposition," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    4. Woo, Soomin & Bae, Sangjae & Moura, Scott J., 2021. "Pareto optimality in cost and service quality for an Electric Vehicle charging facility," Applied Energy, Elsevier, vol. 290(C).
    5. Tan, Lihua & Li, Chuandong & Huang, Junjian & Huang, Tingwen, 2021. "Output feedback leader-following consensus for nonlinear stochastic multiagent systems: The event-triggered method," Applied Mathematics and Computation, Elsevier, vol. 395(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    2. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    3. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    4. Anders F. Jensen & Thomas K. Rasmussen & Carlo G. Prato, 2020. "A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    5. Lin, Haiyang & Bian, Caiyun & Wang, Yu & Li, Hailong & Sun, Qie & Wallin, Fredrik, 2022. "Optimal planning of intra-city public charging stations," Energy, Elsevier, vol. 238(PC).
    6. Qingyou Yan & Hua Dong & Meijuan Zhang, 2021. "Service Evaluation of Electric Vehicle Charging Station: An Application of Improved Matter-Element Extension Method," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    7. Cen, Xuekai & Lo, Hong K. & Li, Lu & Lee, Enoch, 2018. "Modeling electric vehicles adoption for urban commute trips," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 431-454.
    8. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    9. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    10. Se Hoon Baik & Young Gyu Jin & Yong Tae Yoon, 2018. "Determining Equipment Capacity of Electric Vehicle Charging Station Operator for Profit Maximization," Energies, MDPI, vol. 11(9), pages 1-15, September.
    11. Sahar Koohfar & Wubeshet Woldemariam & Amit Kumar, 2023. "Performance Comparison of Deep Learning Approaches in Predicting EV Charging Demand," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    12. Jiang, Huaiguang & Zhang, Yingchen & Chen, Yuche & Zhao, Changhong & Tan, Jin, 2018. "Power-traffic coordinated operation for bi-peak shaving and bi-ramp smoothing – A hierarchical data-driven approach," Applied Energy, Elsevier, vol. 229(C), pages 756-766.
    13. Yue Wang & Zhong Liu & Jianmai Shi & Guohua Wu & Rui Wang, 2018. "Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network," Energies, MDPI, vol. 11(9), pages 1-21, September.
    14. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    15. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    16. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    17. Geng, Lijun & Lu, Zhigang & He, Liangce & Zhang, Jiangfeng & Li, Xueping & Guo, Xiaoqiang, 2019. "Smart charging management system for electric vehicles in coupled transportation and power distribution systems," Energy, Elsevier, vol. 189(C).
    18. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    19. Erdogan, Nuh & Pamucar, Dragan & Kucuksari, Sadik & Deveci, Muhammet, 2021. "An integrated multi-objective optimization and multi-criteria decision-making model for optimal planning of workplace charging stations," Applied Energy, Elsevier, vol. 304(C).
    20. He, Fang & Yin, Yafeng & Lawphongpanich, Siriphong, 2014. "Network equilibrium models with battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 306-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.