Development of an efficient thermal management system for Vanadium Redox Flow Battery under different charge-discharge conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.09.056
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liuyue Cao & Anders Kronander & Ao Tang & Da-Wei Wang & Maria Skyllas-Kazacos, 2016. "Membrane Permeability Rates of Vanadium Ions and Their Effects on Temperature Variation in Vanadium Redox Batteries," Energies, MDPI, vol. 9(12), pages 1-15, December.
- Kim, Jungmyung & Park, Heesung, 2017. "Experimental analysis of discharge characteristics in vanadium redox flow battery," Applied Energy, Elsevier, vol. 206(C), pages 451-457.
- Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
- Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
- Al-Yasiri, Mohammed & Park, Jonghyun, 2018. "A novel cell design of vanadium redox flow batteries for enhancing energy and power performance," Applied Energy, Elsevier, vol. 222(C), pages 530-539.
- Zheng, Qiong & Zhang, Huamin & Xing, Feng & Ma, Xiangkun & Li, Xianfeng & Ning, Guiling, 2014. "A three-dimensional model for thermal analysis in a vanadium flow battery," Applied Energy, Elsevier, vol. 113(C), pages 1675-1685.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Trovò, Andrea & Marini, Giacomo & Sutto, Alessandro & Alotto, Piergiorgio & Giomo, Monica & Moro, Federico & Guarnieri, Massimo, 2019. "Standby thermal model of a vanadium redox flow battery stack with crossover and shunt-current effects," Applied Energy, Elsevier, vol. 240(C), pages 893-906.
- Chen, Hui & Li, Xiangrong & Gao, Hai & Liu, Jianguo & Yan, Chuanwei & Tang, Ao, 2019. "Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay," Applied Energy, Elsevier, vol. 247(C), pages 13-23.
- Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
- Pugach, M. & Vyshinsky, V. & Bischi, A., 2019. "Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
- Li, Yifeng & Bao, Jie & Skyllas-Kazacos, Maria & Akter, Md Parvez & Zhang, Xinan & Fletcher, John, 2019. "Studies on dynamic responses and impedance of the vanadium redox flow battery," Applied Energy, Elsevier, vol. 237(C), pages 91-102.
- Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
- Jiang, H.R. & Shyy, W. & Wu, M.C. & Zhang, R.H. & Zhao, T.S., 2019. "A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 105-113.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
- Wei, L. & Zhao, T.S. & Xu, Q. & Zhou, X.L. & Zhang, Z.H., 2017. "In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 190(C), pages 1112-1118.
- Wei, L. & Zhao, T.S. & Zeng, L. & Zhou, X.L. & Zeng, Y.K., 2016. "Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries," Applied Energy, Elsevier, vol. 180(C), pages 386-391.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode," Applied Energy, Elsevier, vol. 213(C), pages 293-305.
- Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
- Souentie, Stamatios & Amr, Issam & Alsuhaibani, Abdulrahman & Almazroei, Essa & Hammad, Ahmad D., 2017. "Temperature, charging current and state of charge effects on iron-vanadium flow batteries operation," Applied Energy, Elsevier, vol. 206(C), pages 568-576.
- Yuan, Chenguang & Xing, Feng & Zheng, Qiong & Zhang, Huamin & Li, Xianfeng & Ma, Xiangkun, 2020. "Factor analysis of the uniformity of the transfer current density in vanadium flow battery by an improved three-dimensional transient model," Energy, Elsevier, vol. 194(C).
- Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
- Shu-Ling Huang & Chi-Ping Li & Chia-Chin Chang & Chen-Chen Tseng & Ming-Wei Wang & Mei-Ling Chen, 2020. "Real-Time Monitoring of the Thermal Effect for the Redox Flow Battery by an Infrared Thermal Imaging Technology," Energies, MDPI, vol. 13(24), pages 1-19, December.
- He, Qijiao & Li, Zheng & Zhao, Dongqi & Yu, Jie & Tan, Peng & Guo, Meiting & Liao, Tianjun & Zhao, Tianshou & Ni, Meng, 2023. "A 3D modelling study on all vanadium redox flow battery at various operating temperatures," Energy, Elsevier, vol. 282(C).
- Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
- Kim, Dong Kyu & Yoon, Sang Jun & Lee, Jaeho & Kim, Sangwon, 2018. "Parametric study and flow rate optimization of all-vanadium redox flow batteries," Applied Energy, Elsevier, vol. 228(C), pages 891-901.
- Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
More about this item
Keywords
Vanadium Redox Flow Battery; Stack current; Battery temperature; Flow rate; System efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1182-1192. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.