IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp461-468.html
   My bibliography  Save this article

Effect of water content on [Bmim][HSO4] assisted in-situ transesterification of wet Nannochloropsis oceanica

Author

Listed:
  • Sun, Yingqiang
  • Xu, Chunyan
  • Igou, Thomas
  • Liu, Peilu
  • Hu, Zixuan
  • Van Ginkel, Steven W.
  • Chen, Yongsheng

Abstract

1-Butyl-3-methylimidazolium hydrogen sulfate ([Bmim][HSO4]) was employed to catalyze the in-situ transesterification of wet Nannochloropsis oceanica. Algal cell wall was dissolved by [Bmim][HSO4] according to TEM analysis of untreated Nannochloropsis sp. cells and lipid extracted algae (LEA). The temperature and time are favorable to biodiesel production in 100–200 °C, time of 0–70 min, with methanol: algae, however, it decreased to 10.64% at time of 90 min. The biodiesel and energy production of [Bmim][HSO4] catalyzed in-situ transesterification varied due to the competition of catalytic property and algal dissolution ability with variation of water content. The catalytic property of [Bmim][HSO4] was the dominate parameter affecting biodiesel production, therefore, total energy production of in-situ transesterification, as a parameter of biodiesel production, was slightly increased from 13.12 kJ to 14.51KJ with water content of wet algae varied from 0 to 15 wt%. However, it decreased to 8.37 at water content of 20 wt% due to the weakened algal dissolution ability, which was proved by the decrease of hydrogen bond acceptor capacity(β) from 0.942858 to 0.942851 in water content of 0–30 wt%. The decomposition of carbohydrates and proteins in IL – water mixtures enhanced biodiesel production according to elemental analysis of LEA.

Suggested Citation

  • Sun, Yingqiang & Xu, Chunyan & Igou, Thomas & Liu, Peilu & Hu, Zixuan & Van Ginkel, Steven W. & Chen, Yongsheng, 2018. "Effect of water content on [Bmim][HSO4] assisted in-situ transesterification of wet Nannochloropsis oceanica," Applied Energy, Elsevier, vol. 226(C), pages 461-468.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:461-468
    DOI: 10.1016/j.apenergy.2018.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yanan & Hellier, Paul & Purton, Saul & Baganz, Frank & Ladommatos, Nicos, 2016. "Algal biomass and diesel emulsions: An alternative approach for utilizing the energy content of microalgal biomass in diesel engines," Applied Energy, Elsevier, vol. 172(C), pages 80-95.
    2. Dong, Tao & Knoshaug, Eric P. & Pienkos, Philip T. & Laurens, Lieve M.L., 2016. "Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review," Applied Energy, Elsevier, vol. 177(C), pages 879-895.
    3. Shwetharani, R. & Balakrishna, R. Geetha, 2016. "Efficient algal lipid extraction via photocatalysis and its conversion to biofuel," Applied Energy, Elsevier, vol. 168(C), pages 364-374.
    4. Gnansounou, Edgard & Kenthorai Raman, Jegannathan, 2016. "Life cycle assessment of algae biodiesel and its co-products," Applied Energy, Elsevier, vol. 161(C), pages 300-308.
    5. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
    6. Yu, Xinhai & Yang, Jie & Lu, Haitao & Tu, Shan-Tung & Yan, Jinyue, 2015. "Energy-efficient extraction of fuel from Chlorella vulgaris by ionic liquid combined with CO2 capture," Applied Energy, Elsevier, vol. 160(C), pages 648-655.
    7. Zhang, Quanguo & Hu, Jianjun & Lee, Duu-Jong, 2017. "Pretreatment of biomass using ionic liquids: Research updates," Renewable Energy, Elsevier, vol. 111(C), pages 77-84.
    8. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    9. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Jesus, Sérgio S. & Maciel Filho, Rubens, 2022. "Are ionic liquids eco-friendly?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. de Jesus, Sérgio S. & Filho, Rubens Maciel, 2020. "Recent advances in lipid extraction using green solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    2. Sun, Zhe & Zhou, Zhi, 2019. "Nature-inspired virus-assisted algal cell disruption for cost-effective biofuel production," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Pooja Kandimalla & Priyanka Vatte & Chandra Sekhar Rao Bandaru, 2021. "Phycoremediation of automobile exhaust gases using green microalgae," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6301-6322, April.
    4. Collett, James R. & Billing, Justin M. & Meyer, Pimphan A. & Schmidt, Andrew J. & Remington, A. Brook & Hawley, Erik R. & Hofstad, Beth A. & Panisko, Ellen A. & Dai, Ziyu & Hart, Todd R. & Santosa, Da, 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover," Applied Energy, Elsevier, vol. 233, pages 840-853.
    5. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    6. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    8. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    9. Muhammad, Gul & Alam, Md Asraful & Mofijur, M. & Jahirul, M.I. & Lv, Yongkun & Xiong, Wenlong & Ong, Hwai Chyuan & Xu, Jingliang, 2021. "Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Chen, Xinfei & Ma, Xiaoqian & Zeng, Xianghao & Zheng, Chupeng & Lu, Xiaoluan, 2020. "Ethanol addition during aqueous phase recirculation for further improving bio-oil yield and quality," Applied Energy, Elsevier, vol. 262(C).
    11. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    12. Maria I. Silva & Ana L. Gonçalves & Vítor J. P. Vilar & José C. M. Pires, 2021. "Experimental and Techno-Economic Study on the Use of Microalgae for Paper Industry Effluents Remediation," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    13. Yellapu, Sravan Kumar & Klai, Nouha & Kaur, Rajwinder & Tyagi, Rajeshwar D. & Surampalli, Rao Y., 2019. "Oleaginous yeast biomass flocculation using bioflocculant produced in wastewater sludge and transesterification using petroleum diesel as a co-solvent," Renewable Energy, Elsevier, vol. 131(C), pages 217-228.
    14. Andreo-Martínez, Pedro & Ortiz-Martínez, Víctor Manuel & García-Martínez, Nuria & de los Ríos, Antonia Pérez & Hernández-Fernández, Francisco José & Quesada-Medina, Joaquín, 2020. "Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis," Applied Energy, Elsevier, vol. 264(C).
    15. Zaini, Ilman Nuran & Nurdiawati, Anissa & Aziz, Muhammad, 2017. "Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae," Applied Energy, Elsevier, vol. 207(C), pages 134-145.
    16. Togarcheti, Sarat Chandra & Mediboyina, Maneesh kumar & Chauhan, Vikas Singh & Mukherji, Suparna & Ravi, Sarada & Mudliar, Sandeep Narayan, 2017. "Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 286-294.
    17. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    18. Brigljević, Boris & Liu, Jay J. & Lim, Hankwon, 2019. "Comprehensive feasibility assessment of a poly-generation process integrating fast pyrolysis of S. japonica and the Rankine cycle," Applied Energy, Elsevier, vol. 254(C).
    19. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    20. Onumaegbu, C. & Alaswad, A. & Rodriguez, C. & Olabi, A., 2019. "Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology," Renewable Energy, Elsevier, vol. 132(C), pages 1323-1331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:461-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.