IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp235-246.html
   My bibliography  Save this article

Determining wasted energy in the airside of a perimeter-cooled data center via direct computation of the Exergy Destruction

Author

Listed:
  • Silva-Llanca, Luis
  • Ortega, Alfonso
  • Fouladi, Kamran
  • del Valle, Marcelo
  • Sundaralingam, Vikneshan

Abstract

To keep pace with the growing energy demand, legacy air-cooled data centers begun implementing energy efficiency strategies: Perfecting air flow management, enhancing cooling air delivery and collecting (re-using) waste heat. However, one may wonder: What is the magnitude of these energy savings? Is it worth the effort? The second law of Thermodynamics offers unique insights about energy wasteful practices by estimating the Exergy Destruction in a system. Exergy is equivalent to the “available energy”, hence the presence of inefficiencies “Destroys Exergy”. In this work, we numerically modeled the behavior of the airside in an existing data center laboratory (CEETHERM) using the commercial Finite Volume software 6SigmaDCXTM. The collected numerical data were used to post-process two Exergy Destruction approaches (Direct and Indirect method), whose behavior was tested against: (1) A simplified study case and (2) Actual data center flow. Both approaches worked well against the study case, although for case (2) the Indirect Method–which neglects turbulence effects–predicted zones of artificial negative Exergy Destruction. The Direct Method permitted associating large inefficiencies in the airflow to hot–cold airstream pre-mixing and important pressure drops in the raised floor. The airside Exergy Destruction encompassed a significant amount of the total irreversibilities in the system, suggesting that mitigating (or eliminating) it, can substantially improve energy saving efforts, especially in legacy data centers.

Suggested Citation

  • Silva-Llanca, Luis & Ortega, Alfonso & Fouladi, Kamran & del Valle, Marcelo & Sundaralingam, Vikneshan, 2018. "Determining wasted energy in the airside of a perimeter-cooled data center via direct computation of the Exergy Destruction," Applied Energy, Elsevier, vol. 213(C), pages 235-246.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:235-246
    DOI: 10.1016/j.apenergy.2018.01.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191830031X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tatchell-Evans, Morgan & Kapur, Nik & Summers, Jonathan & Thompson, Harvey & Oldham, Dan, 2017. "An experimental and theoretical investigation of the extent of bypass air within data centres employing aisle containment, and its impact on power consumption," Applied Energy, Elsevier, vol. 186(P3), pages 457-469.
    2. Habibi Khalaj, Ali & Scherer, Thomas & Siriwardana, Jayantha & Halgamuge, Saman K., 2015. "Multi-objective efficiency enhancement using workload spreading in an operational data center," Applied Energy, Elsevier, vol. 138(C), pages 432-444.
    3. Zimmermann, Severin & Meijer, Ingmar & Tiwari, Manish K. & Paredes, Stephan & Michel, Bruno & Poulikakos, Dimos, 2012. "Aquasar: A hot water cooled data center with direct energy reuse," Energy, Elsevier, vol. 43(1), pages 237-245.
    4. Uddin, Mueen & Rahman, Azizah Abdul, 2012. "Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4078-4094.
    5. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    6. Ham, Sang-Woo & Kim, Min-Hwi & Choi, Byung-Nam & Jeong, Jae-Weon, 2015. "Energy saving potential of various air-side economizers in a modular data center," Applied Energy, Elsevier, vol. 138(C), pages 258-275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    2. Gupta, Rohit & Moazamigoodarzi, Hosein & MirhoseiniNejad, SeyedMorteza & Down, Douglas G. & Puri, Ishwar K., 2020. "Workload management for air-cooled data centers: An energy and exergy based approach," Energy, Elsevier, vol. 209(C).
    3. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
    4. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    5. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
    6. Moazamigoodarzi, Hosein & Tsai, Peiying Jennifer & Pal, Souvik & Ghosh, Suvojit & Puri, Ishwar K., 2019. "Influence of cooling architecture on data center power consumption," Energy, Elsevier, vol. 183(C), pages 525-535.
    7. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Down, Douglas G. & Puri, Ishwar K., 2021. "Energy, exergy and computing efficiency based data center workload and cooling management," Applied Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    2. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    3. Shuja, Junaid & Gani, Abdullah & Shamshirband, Shahaboddin & Ahmad, Raja Wasim & Bilal, Kashif, 2016. "Sustainable Cloud Data Centers: A survey of enabling techniques and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 195-214.
    4. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    5. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    6. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    7. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    8. Sikai Zou & Chang Yue & Ting Xiao & Xingyi Ma & Yiwei Wang, 2023. "Study on Effects of Operating Parameters on a Water-Cooled Loop Thermosyphon System under Partial Server Utilization," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    9. Wang, Wei & Abdolrashidi, Amirali & Yu, Nanpeng & Wong, Daniel, 2019. "Frequency regulation service provision in data center with computational flexibility," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Maria Avgerinou & Paolo Bertoldi & Luca Castellazzi, 2017. "Trends in Data Centre Energy Consumption under the European Code of Conduct for Data Centre Energy Efficiency," Energies, MDPI, vol. 10(10), pages 1-18, September.
    11. Hu, Zhi-Hua & Zheng, Yu-Xin & Wang, You-Gan, 2022. "Packing computing servers into the vessel of an underwater data center considering cooling efficiency," Applied Energy, Elsevier, vol. 314(C).
    12. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    13. Oró, Eduard & Depoorter, Victor & Garcia, Albert & Salom, Jaume, 2015. "Energy efficiency and renewable energy integration in data centres. Strategies and modelling review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 429-445.
    14. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    15. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
    16. Uddin, Mueen & Darabidarabkhani, Yasaman & Shah, Asadullah & Memon, Jamshed, 2015. "Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1553-1563.
    17. Fulpagare, Yogesh & Bhargav, Atul, 2015. "Advances in data center thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 981-996.
    18. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
    19. Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).
    20. Yan Bai & Lijun Gu & Xiao Qi, 2018. "Comparative Study of Energy Performance between Chip and Inlet Temperature-Aware Workload Allocation in Air-Cooled Data Center," Energies, MDPI, vol. 11(3), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:235-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.