IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v205y2017icp976-990.html
   My bibliography  Save this article

Development of a new dynamic test procedure for the laboratory characterization of a whole heating and cooling system

Author

Listed:
  • Menegon, Diego
  • Soppelsa, Anton
  • Fedrizzi, Roberto

Abstract

The performance of heating and cooling systems are affected by their dynamic operating conditions. Asa consequence, a sound evaluation of system performance should be done through a dynamic test procedure. However, the complexity, the cost, and the time for such type of experimentation are obstacles to the diffusion of this test method.

Suggested Citation

  • Menegon, Diego & Soppelsa, Anton & Fedrizzi, Roberto, 2017. "Development of a new dynamic test procedure for the laboratory characterization of a whole heating and cooling system," Applied Energy, Elsevier, vol. 205(C), pages 976-990.
  • Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:976-990
    DOI: 10.1016/j.apenergy.2017.08.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191731125X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    2. Büchner, Daniel & Schraube, Christian & Carlon, Elisa & von Sonntag, Justus & Schwarz, Markus & Verma, Vijay Kumar & Ortwein, Andreas, 2015. "Survey of modern pellet boilers in Austria and Germany – System design and customer satisfaction of residential installations," Applied Energy, Elsevier, vol. 160(C), pages 390-403.
    3. Lazrak, Amine & Leconte, Antoine & Chèze, David & Fraisse, Gilles & Papillon, Philippe & Souyri, Bernard, 2015. "Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies," Applied Energy, Elsevier, vol. 158(C), pages 142-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sayegh, Hasan & Leconte, Antoine & Fraisse, Gilles & Wurtz, Etienne & Rouchier, Simon, 2022. "Computational time reduction using detailed building models with Typical Short Sequences," Energy, Elsevier, vol. 244(PB).
    2. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.
    3. Carsten Palkowski & Andreas Zottl & Ivan Malenkovic & Anne Simo, 2019. "Fixing Efficiency Values by Unfixing Compressor Speed: Dynamic Test Method for Heat Pumps," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. Sommer, Tobias & Mennel, Stefan & Sulzer, Matthias, 2019. "Lowering the pressure in district heating and cooling networks by alternating the connection of the expansion vessel," Energy, Elsevier, vol. 172(C), pages 991-996.
    5. Sun, Xiaoyu & Wang, Zhichao & Li, Xiaofeng & Xu, Zhaowei & Yang, Qiang & Yang, Yingxia, 2021. "Seasonal heating performance prediction of air-to-water heat pumps based on short-term dynamic monitoring," Renewable Energy, Elsevier, vol. 180(C), pages 829-837.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Persson, Tomas & Wiertzema, Holger & Win, Kaung Myat & Bales, Chris, 2019. "Modelling of dynamics and stratification effects in pellet boilers," Renewable Energy, Elsevier, vol. 134(C), pages 769-782.
    2. Przemysław Motyl & Danuta Król & Sławomir Poskrobko & Marek Juszczak, 2020. "Numerical Modelling and Experimental Verification of the Low-Emission Biomass Combustion Process in a Domestic Boiler with Flue Gas Flow around the Combustion Chamber," Energies, MDPI, vol. 13(21), pages 1-16, November.
    3. Tejeda De La Cruz, Alberto & Riviere, Philippe & Marchio, Dominique & Cauret, Odile & Milu, Anamaria, 2017. "Hardware in the loop test bench using Modelica: A platform to test and improve the control of heating systems," Applied Energy, Elsevier, vol. 188(C), pages 107-120.
    4. Büchner, Daniel & Schraube, Christian & Carlon, Elisa & von Sonntag, Justus & Schwarz, Markus & Verma, Vijay Kumar & Ortwein, Andreas, 2015. "Survey of modern pellet boilers in Austria and Germany – System design and customer satisfaction of residential installations," Applied Energy, Elsevier, vol. 160(C), pages 390-403.
    5. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    6. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.
    7. Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
    8. Matschegg, Doris & Carlon, Elisa & Sturmlechner, Rita & Sonnleitner, Andrea & Fuhrmann, Marilene & Dißauer, Christa & Strasser, Christoph & Enigl, Monika, 2023. "Investigation of individual motives and decision paths on residential energy supply systems," Energy, Elsevier, vol. 281(C).
    9. Hecher, Maria & Hatzl, Stefanie & Knoeri, Christof & Posch, Alfred, 2017. "The trigger matters: The decision-making process for heating systems in the residential building sector," Energy Policy, Elsevier, vol. 102(C), pages 288-306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:205:y:2017:i:c:p:976-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.