IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v187y2017icp862-872.html
   My bibliography  Save this article

Sizing energy storage systems in DC networks: A general methodology based upon power losses minimization

Author

Listed:
  • Fantauzzi, M.
  • Lauria, D.
  • Mottola, F.
  • Scalfati, A.

Abstract

In this paper, an analytical approach that deals with the optimal sizing of energy storage systems in direct current networks is proposed. In modern power systems, the widespread use of power electronics, storage devices, and automation is driving power engineers to focus on the use of direct current networks. This new focus requires specific tools for the optimal planning and operation of these networks in order to increase energy efficiency and reduce operating costs. This paper is focused on the improvements in the efficiencies of direct current networks, which are characterized by the presence of loads, units for the generation of renewable power, and storage devices. Based on the calculus of variations, an original matrix formulation which starts with the nodal representation of the direct current network is proposed. Two attractive closed-form solutions are presented for minimizing power losses, i.e., (1) a solution based on the approximation of considering the voltage constant at all the network’s busses and (2) a solution based on the linear approximation of the load flow. In both cases, the goal is to minimize losses over a given time horizon (e.g., the daily cycle). The formulation of the problem allows an analytical solution to be obtained that represents a suitable tool for the purpose of designing storage. In addition, the proposed approach can be applied and extended to the optimal sizing of storage systems. The proposed sizing procedure, which uses an analytical approach, is formulated in a general manner that can be used for various storage technologies. The results of numerical applications clearly have demonstrated both the feasibility and accuracy of the methodology to be used in the proposed design. We also propose an interesting parametric study in order to determine the optimal technology and the optimal size of the storage device.

Suggested Citation

  • Fantauzzi, M. & Lauria, D. & Mottola, F. & Scalfati, A., 2017. "Sizing energy storage systems in DC networks: A general methodology based upon power losses minimization," Applied Energy, Elsevier, vol. 187(C), pages 862-872.
  • Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:862-872
    DOI: 10.1016/j.apenergy.2016.11.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916316282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    2. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    3. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    4. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    5. Bennett, Christopher J. & Stewart, Rodney A. & Lu, Jun Wei, 2015. "Development of a three-phase battery energy storage scheduling and operation system for low voltage distribution networks," Applied Energy, Elsevier, vol. 146(C), pages 122-134.
    6. Glasgo, Brock & Azevedo, Inês Lima & Hendrickson, Chris, 2016. "How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings," Applied Energy, Elsevier, vol. 180(C), pages 66-75.
    7. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    8. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    9. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    10. Bianchi, M. & Branchini, L. & Ferrari, C. & Melino, F., 2014. "Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector," Applied Energy, Elsevier, vol. 136(C), pages 805-816.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Danilo Montoya & Farhad Zishan & Diego Armando Giral-Ramírez, 2022. "Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    2. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    3. Fabio Mottola & Daniela Proto & Pietro Varilone & Paola Verde, 2020. "Planning of Distributed Energy Storage Systems in μGrids Accounting for Voltage Dips," Energies, MDPI, vol. 13(2), pages 1-20, January.
    4. Mahdavi, Sajad & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2018. "Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks," Energy, Elsevier, vol. 151(C), pages 954-965.
    5. Elio Chiodo & Maurizio Fantauzzi & Davide Lauria & Fabio Mottola, 2018. "A Probabilistic Approach for the Optimal Sizing of Storage Devices to Increase the Penetration of Plug-in Electric Vehicles in Direct Current Networks," Energies, MDPI, vol. 11(5), pages 1-20, May.
    6. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    2. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    4. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    5. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    6. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    7. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    8. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    9. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    10. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    11. Kapila, Sahil & Oni, Abayomi Olufemi & Kumar, Amit, 2017. "The development of techno-economic models for large-scale energy storage systems," Energy, Elsevier, vol. 140(P1), pages 656-672.
    12. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    13. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    14. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    15. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    16. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    17. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    18. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    19. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Jurasz, Jakub & Dąbek, Paweł B. & Barbosa, Paulo Sergio Franco & Brandão, Roberto & de Castro, Nivalde José & Leal Filho, Walter & Riahi, Ke, 2022. "Lift Energy Storage Technology: A solution for decentralized urban energy storage," Energy, Elsevier, vol. 254(PA).
    20. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2020. "Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:187:y:2017:i:c:p:862-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.