Optimization of a Gas Switching Combustion process through advanced heat management strategies
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.04.037
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Hamers, H.P. & Romano, M.C. & Spallina, V. & Chiesa, P. & Gallucci, F. & van Sint Annaland, M., 2015. "Energy analysis of two stage packed-bed chemical looping combustion configurations for integrated gasification combined cycles," Energy, Elsevier, vol. 85(C), pages 489-502.
- Sorgenfrei, Max & Tsatsaronis, George, 2014. "Design and evaluation of an IGCC power plant using iron-based syngas chemical-looping (SCL) combustion," Applied Energy, Elsevier, vol. 113(C), pages 1958-1964.
- Erlach, B. & Schmidt, M. & Tsatsaronis, G., 2011. "Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion," Energy, Elsevier, vol. 36(6), pages 3804-3815.
- Naqvi, Rehan & Wolf, Jens & Bolland, Olav, 2007. "Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO2 capture," Energy, Elsevier, vol. 32(4), pages 360-370.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nazir, Shareq Mohd & Cloete, Jan Hendrik & Cloete, Schalk & Amini, Shahriar, 2019. "Gas switching reforming (GSR) for power generation with CO2 capture: Process efficiency improvement studies," Energy, Elsevier, vol. 167(C), pages 757-765.
- Carlos Arnaiz del Pozo & Ángel Jiménez Álvaro & Jan Hendrik Cloete & Schalk Cloete & Shahriar Amini, 2020. "Exergy Analysis of Gas Switching Chemical Looping IGCC Plants," Energies, MDPI, vol. 13(3), pages 1-25, January.
- Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
- Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
- Han, Lu & Bollas, George M., 2016. "Chemical-looping combustion in a reverse-flow fixed bed reactor," Energy, Elsevier, vol. 102(C), pages 669-681.
- Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
- Hamers, H.P. & Romano, M.C. & Spallina, V. & Chiesa, P. & Gallucci, F. & van Sint Annaland, M., 2015. "Energy analysis of two stage packed-bed chemical looping combustion configurations for integrated gasification combined cycles," Energy, Elsevier, vol. 85(C), pages 489-502.
- Huang, Zhen & He, Fang & Chen, Dezhen & Zhao, Kun & Wei, Guoqiang & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2016. "Investigation on reactivity of iron nickel oxides in chemical looping dry reforming," Energy, Elsevier, vol. 116(P1), pages 53-63.
- Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
- Khallaghi, Navid & Hanak, Dawid P. & Manovic, Vasilije, 2019. "Gas-fired chemical looping combustion with supercritical CO2 cycle," Applied Energy, Elsevier, vol. 249(C), pages 237-244.
- Bartocci, Pietro & Abad, Alberto & Mattisson, Tobias & Cabello, Arturo & Loscertales, Margarita de las Obras & Negredo, Teresa Mendiara & Zampilli, Mauro & Taiana, Andrea & Serra, Angela & Arauzo, Inm, 2022. "Bioenergy with Carbon Capture and Storage (BECCS) developed by coupling a Pressurised Chemical Looping combustor with a turbo expander: How to optimize plant efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Fernández, J.R. & Abanades, J.C., 2014. "Conceptual design of a Ni-based chemical looping combustion process using fixed-beds," Applied Energy, Elsevier, vol. 135(C), pages 309-319.
- Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
- Li, Yingjie & Zhao, Changsui & Chen, Huichao & Ren, Qiangqiang & Duan, Lunbo, 2011. "CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle," Energy, Elsevier, vol. 36(3), pages 1590-1598.
- Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
- Håkonsen, Silje Fosse & Grande, Carlos A. & Blom, Richard, 2014. "Rotating bed reactor for CLC: Bed characteristics dependencies on internal gas mixing," Applied Energy, Elsevier, vol. 113(C), pages 1952-1957.
- Bhavsar, Saurabh & Isenberg, Natalie & More, Amey & Veser, Götz, 2016. "Lanthana-doped ceria as active support for oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 168(C), pages 236-247.
- Liszka, Marcin & Malik, Tomasz & Manfrida, Giampaolo, 2012. "Energy and exergy analysis of hydrogen-oriented coal gasification with CO2 capture," Energy, Elsevier, vol. 45(1), pages 142-150.
- Duan, Liqiang & Xia, Kun & Feng, Tao & Jia, Shilun & Bian, Jing, 2016. "Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system," Energy, Elsevier, vol. 117(P2), pages 578-589.
- Galinsky, Nathan & Mishra, Amit & Zhang, Jia & Li, Fanxing, 2015. "Ca1−xAxMnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 157(C), pages 358-367.
- Galinsky, Nathan & Sendi, Marwan & Bowers, Lindsay & Li, Fanxing, 2016. "CaMn1−xBxO3−δ (B=Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 174(C), pages 80-87.
More about this item
Keywords
; ; ; ; ;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1459-1470. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.