IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp470-477.html
   My bibliography  Save this article

Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis

Author

Listed:
  • Liu, Peng
  • Le, Jiawei
  • Wang, Lanlan
  • Pan, Tieying
  • Lu, Xilan
  • Zhang, Dexiang

Abstract

The relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis were discussed extensively. The pyrolysis tests were carried out in a tube reactor at 873K and keep 15min. The carbon distribution in coals was investigated by solid state 13C nuclear magnetic resonance (N.M.R.). The curve-fitting method was used to quantify the accurate contents of structural carbon. The alkanes in coal tar were analyzed by Gas Chromatograph–Mass Spectrometer (GC–MS). The results show that oxygen-linked aromatic carbon decreases with the increasing of coal rank. The aliphatic carbon contents of Huainan (HN) coal are 44.20%, the highest among the four coals. The carbon types in coal structure have a significant influence on the formation of tar and liquid alkane. The coal tar yields are related to the aliphatic substituted aromatic carbon, CH2/CH3 ratio and oxygen-linked carbon in coal so that the increasing order of tar yield is Inner Mongolia lignite (IM, 6.30wt.%)

Suggested Citation

  • Liu, Peng & Le, Jiawei & Wang, Lanlan & Pan, Tieying & Lu, Xilan & Zhang, Dexiang, 2016. "Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis," Applied Energy, Elsevier, vol. 183(C), pages 470-477.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:470-477
    DOI: 10.1016/j.apenergy.2016.08.166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916312752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    2. Liu, Zhengang & Quek, Augustine & Parshetti, Ganesh & Jain, Akshay & Srinivasan, M.P. & Hoekman, S. Kent & Balasubramanian, Rajasekhar, 2013. "A study of nitrogen conversion and polycyclic aromatic hydrocarbon (PAH) emissions during hydrochar–lignite co-pyrolysis," Applied Energy, Elsevier, vol. 108(C), pages 74-81.
    3. Lehto, Jani & Oasmaa, Anja & Solantausta, Yrjö & Kytö, Matti & Chiaramonti, David, 2014. "Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass," Applied Energy, Elsevier, vol. 116(C), pages 178-190.
    4. Pei, Pei & Wang, Qicheng & Wu, Daohong, 2015. "Application and research on Regenerative High Temperature Air Combustion technology on low-rank coal pyrolysis," Applied Energy, Elsevier, vol. 156(C), pages 762-766.
    5. Chen, Xiaohui & Zheng, Danxing & Guo, Jing & Liu, Jingxiao & Ji, Peijun, 2013. "Energy analysis for low-rank coal based process system to co-produce semicoke, syngas and light oil," Energy, Elsevier, vol. 52(C), pages 279-288.
    6. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    7. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    8. Al-Ismaily, Hilal A. & Probert, Douglas, 1997. "Prospects for Omani coal," Applied Energy, Elsevier, vol. 58(2-3), pages 131-160, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Xiongchao & Luo, Meng & Li, Shouyi & Yang, Yuanping & Chen, Xujun & Tian, Bin & Wang, Yonggang, 2017. "The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal," Applied Energy, Elsevier, vol. 199(C), pages 335-346.
    2. Chen, Zhaohui & Li, Yunjia & Lai, Dengguo & Geng, Sulong & Zhou, Qi & Gao, Shiqiu & Xu, Guangwen, 2018. "Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas," Applied Energy, Elsevier, vol. 215(C), pages 348-355.
    3. Wei, Jianguang & Yang, Erlong & Li, Jiangtao & Liang, Shuang & Zhou, Xiaofeng, 2023. "Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs," Energy, Elsevier, vol. 282(C).
    4. Liu, Yang & Ran, Chunmei & Siddiqui, Azka R. & Mao, Xiao & Kang, Qinhao & Fu, Jie & Deng, Zeyu & Song, Yongmeng & Jiang, Zhihui & Zhang, Tianhao & Ao, Wenya & Dai, Jianjun, 2018. "Pyrolysis of textile dyeing sludge in fluidized bed: Characterization and analysis of pyrolysis products," Energy, Elsevier, vol. 165(PA), pages 720-730.
    5. Song, Yonghui & Lei, Siming & Li, Jincheng & Yin, Ning & Zhou, Jun & Lan, Xinzhe, 2021. "In situ FT-IR analysis of coke formation mechanism during Co-pyrolysis of low-rank coal and direct coal liquefaction residue," Renewable Energy, Elsevier, vol. 179(C), pages 2048-2062.
    6. Luo, Lei & Zhang, Hai & Jiao, Anyao & Jiang, Yuanzhen & Liu, Jiaxun & Jiang, Xiumin & Tian, Feng, 2019. "Study on the formation and dissipation mechanism of gas phase products during rapid pyrolysis of superfine pulverized coal in entrained flow reactor," Energy, Elsevier, vol. 173(C), pages 985-994.
    7. Cai, Jiawei & Wang, Ruwei & Niu, Zhiyuan & Huang, Qing & Huang, Zhuliang & Xu, Yuchan & Yang, Qiling & Liu, Zhixiang, 2023. "Evolutions of functional groups and polycyclic aromatic hydrocarbons during low temperature pyrolysis of a perhydrous bituminous coal," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Peng & Zhang, Dexiang & Wang, Lanlan & Zhou, Yang & Pan, Tieying & Lu, Xilan, 2016. "The structure and pyrolysis product distribution of lignite from different sedimentary environment," Applied Energy, Elsevier, vol. 163(C), pages 254-262.
    2. Lin, Xiongchao & Luo, Meng & Li, Shouyi & Yang, Yuanping & Chen, Xujun & Tian, Bin & Wang, Yonggang, 2017. "The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal," Applied Energy, Elsevier, vol. 199(C), pages 335-346.
    3. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    4. Chen, Zhaohui & Li, Yunjia & Lai, Dengguo & Geng, Sulong & Zhou, Qi & Gao, Shiqiu & Xu, Guangwen, 2018. "Coupling coal pyrolysis with char gasification in a multi-stage fluidized bed to co-produce high-quality tar and syngas," Applied Energy, Elsevier, vol. 215(C), pages 348-355.
    5. Xu, Shipei & Zeng, Xi & Han, Zhennan & Cheng, Jiguang & Wu, Rongcheng & Chen, Zhaohui & Masĕk, Ondřej & Fan, Xianfeng & Xu, Guangwen, 2019. "Quick pyrolysis of a massive coal sample via rapid infrared heating," Applied Energy, Elsevier, vol. 242(C), pages 732-740.
    6. Zhang, Jie & Zheng, Nan & Wang, Jie, 2016. "Two-stage hydrogasification of different rank coals with a focus on relationships between yields of products and coal properties or structures," Applied Energy, Elsevier, vol. 173(C), pages 438-447.
    7. Yi, Lan & Feng, Jie & Li, Wen-Ying, 2019. "Evaluation on a combined model for low-rank coal pyrolysis," Energy, Elsevier, vol. 169(C), pages 1012-1021.
    8. Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
    9. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    10. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    11. Duan, Wenjun & Yu, Qingbo & Liu, Junxiang & Wu, Tianwei & Yang, Fan & Qin, Qin, 2016. "Experimental and kinetic study of steam gasification of low-rank coal in molten blast furnace slag," Energy, Elsevier, vol. 111(C), pages 859-868.
    12. Ewa Szatyłowicz & Wojciech Walendziuk, 2021. "Analysis of Polycyclic Aromatic Hydrocarbon Content in Ash from Solid Fuel Combustion in Low-Power Boilers," Energies, MDPI, vol. 14(20), pages 1-17, October.
    13. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    14. Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.
    15. Po-Chih Kuo & Wei Wu, 2014. "Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification," Energies, MDPI, vol. 8(1), pages 1-17, December.
    16. Jovanović, Marina & Vučićević, Biljana & Turanjanin, Valentina & Živković, Marija & Spasojević, Vuk, 2014. "Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia," Energy, Elsevier, vol. 77(C), pages 42-48.
    17. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    18. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
    19. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    20. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:470-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.