IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v151y2015icp367-376.html
   My bibliography  Save this article

The new-generation of solenoid injectors equipped with pressure-balanced pilot valves for energy saving and dynamic response improvement

Author

Listed:
  • Ferrari, Alessandro
  • Paolicelli, Federica
  • Pizzo, Pietro

Abstract

A numerical–experimental analysis on a new generation of hydraulically controlled servo solenoid injectors for Euro 6 Diesel engine applications has been carried out. The main innovation of these high-pressure injectors is the replacement of the standard pilot-valve configuration with a pressure-balanced layout. The new setup is aimed at reducing clearance leakages and at improving the dynamic response of the needle to the electrical command.

Suggested Citation

  • Ferrari, Alessandro & Paolicelli, Federica & Pizzo, Pietro, 2015. "The new-generation of solenoid injectors equipped with pressure-balanced pilot valves for energy saving and dynamic response improvement," Applied Energy, Elsevier, vol. 151(C), pages 367-376.
  • Handle: RePEc:eee:appene:v:151:y:2015:i:c:p:367-376
    DOI: 10.1016/j.apenergy.2015.03.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915003669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferrari, A. & Mittica, A. & Spessa, E., 2013. "Benefits of hydraulic layout over driving system in piezo-injectors and proposal of a new-concept CR injector with an integrated Minirail," Applied Energy, Elsevier, vol. 103(C), pages 243-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Liu, Menghe, 2017. "Investigating carbon tax pilot in YRD urban agglomerations—Analysis of a novel ESER system with carbon tax constraints and its application," Applied Energy, Elsevier, vol. 194(C), pages 635-647.
    2. S., d'Ambrosio & A., Ferrari, 2018. "Diesel engines equipped with piezoelectric and solenoid injectors: hydraulic performance of the injectors and comparison of the emissions, noise and fuel consumption," Applied Energy, Elsevier, vol. 211(C), pages 1324-1342.
    3. Ferrari, A. & Novara, C. & Paolucci, E. & Vento, O. & Violante, M. & Zhang, T., 2018. "Design and rapid prototyping of a closed-loop control strategy of the injected mass for the reduction of CO2, combustion noise and pollutant emissions in diesel engines," Applied Energy, Elsevier, vol. 232(C), pages 358-367.
    4. Ferrari, A. & Mittica, A., 2016. "Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules," Applied Energy, Elsevier, vol. 169(C), pages 899-911.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    2. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2014. "Experimental investigation in an optically accessible diesel engine of a fouled piezoelectric injector," Energy, Elsevier, vol. 64(C), pages 842-852.
    3. S., d'Ambrosio & A., Ferrari, 2018. "Diesel engines equipped with piezoelectric and solenoid injectors: hydraulic performance of the injectors and comparison of the emissions, noise and fuel consumption," Applied Energy, Elsevier, vol. 211(C), pages 1324-1342.
    4. Ferrari, A. & Mittica, A., 2016. "Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules," Applied Energy, Elsevier, vol. 169(C), pages 899-911.
    5. Plamondon, E. & Seers, P., 2014. "Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends," Applied Energy, Elsevier, vol. 131(C), pages 411-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:151:y:2015:i:c:p:367-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.