IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v148y2015icp476-488.html
   My bibliography  Save this article

Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method

Author

Listed:
  • Choi, Wonjun
  • Ooka, Ryozo

Abstract

Effective ground thermal conductivity and borehole thermal resistance, which are key parameters in the design of borehole heat exchangers (BHEs), are often determined on the basis of in-situ thermal response tests (TRTs). However, many disturbance factors can affect the accuracy of a TRT, e.g., voltage fluctuations from the power grid and oscillating external environments where a TRT rig is installed. Interpretation of TRT data is often done using the infinite line source (ILS) model, combined with the sequential plot method, because it is not only simple but also provides additional information about the estimation behavior and convergence. However, estimation behavior using the sequential method tends to fluctuate over time because the constant heat flux assumption is always violated as a result of the disturbance factors. As an alternative, a temporal superposition applied analytical model can be used in a recursive curve fitting manner, but this method cannot provide the additional information that sequential method can. In this study, as a solution for interpreting disturbed TRT data and to utilize additional information from the sequential plot method, we proposed an alternative method using a temporal superposition applied ILS model combined with the quasi-Newton optimization method. To verify the effectiveness, the proposed method was applied to in-situ TRTs and the results were compared with those from the conventional method in terms of the estimation stability and convergence speed. The results showed that, compared to the conventional sequential method using the ILS model, the proposed method yielded standard deviations for the effective thermal conductivity and borehole thermal resistance that were at least six times and four times lower, respectively. Moreover, the proposed method was able to achieve about four times faster convergence speeds.

Suggested Citation

  • Choi, Wonjun & Ooka, Ryozo, 2015. "Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method," Applied Energy, Elsevier, vol. 148(C), pages 476-488.
  • Handle: RePEc:eee:appene:v:148:y:2015:i:c:p:476-488
    DOI: 10.1016/j.apenergy.2015.03.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915003992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raymond, J. & Therrien, R. & Gosselin, L. & Lefebvre, R., 2011. "Numerical analysis of thermal response tests with a groundwater flow and heat transfer model," Renewable Energy, Elsevier, vol. 36(1), pages 315-324.
    2. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
    3. Roth, P. & Georgiev, A. & Busso, A. & Barraza, E., 2004. "First in situ determination of ground and borehole thermal properties in Latin America," Renewable Energy, Elsevier, vol. 29(12), pages 1947-1963.
    4. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2012. "An analysis of heat flow through a borehole heat exchanger validated model," Applied Energy, Elsevier, vol. 92(C), pages 523-533.
    5. Bozzoli, F. & Pagliarini, G. & Rainieri, S. & Schiavi, L., 2011. "Estimation of soil and grout thermal properties through a TSPEP (two-step parameter estimation procedure) applied to TRT (thermal response test) data," Energy, Elsevier, vol. 36(2), pages 839-846.
    6. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Min & Zhang, Liwen & Liu, Gang, 2020. "Step-wise algorithm for estimating multi-parameter of the ground and geothermal heat exchangers from thermal response tests," Renewable Energy, Elsevier, vol. 150(C), pages 435-442.
    2. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
    3. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    4. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    5. Li, Biao & Han, Zongwei & Hu, Honghao & Bai, Chenguang, 2020. "Study on the effect of groundwater flow on the identification of thermal properties of soils," Renewable Energy, Elsevier, vol. 147(P2), pages 2688-2695.
    6. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    7. Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
    8. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 2: Numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment," Renewable Energy, Elsevier, vol. 85(C), pages 1090-1105.
    9. Choi, Wonjun & Kikumoto, Hideki & Ooka, Ryozo, 2022. "Probabilistic uncertainty quantification of borehole thermal resistance in real-world scenarios," Energy, Elsevier, vol. 254(PC).
    10. Cristina Sáez Blázquez & Ignacio Martín Nieto & Arturo Farfán Martín & Diego González-Aguilera & Pedro Carrasco García, 2019. "Comparative Analysis of Different Methodologies Used to Estimate the Ground Thermal Conductivity in Low Enthalpy Geothermal Systems," Energies, MDPI, vol. 12(9), pages 1-14, May.
    11. BniLam, Noori & Al-Khoury, Rafid, 2020. "Parameter identification algorithm for ground source heat pump systems," Applied Energy, Elsevier, vol. 264(C).
    12. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    13. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    14. Oliver Suft & David Bertermann, 2022. "One-Year Monitoring of a Ground Heat Exchanger Using the In Situ Thermal Response Test: An Experimental Approach on Climatic Effects," Energies, MDPI, vol. 15(24), pages 1-15, December.
    15. Linden Jensen-Page & Fleur Loveridge & Guillermo A. Narsilio, 2019. "Thermal Response Testing of Large Diameter Energy Piles," Energies, MDPI, vol. 12(14), pages 1-25, July.
    16. Choi, Wonjun & Menberg, Kathrin & Kikumoto, Hideki & Heo, Yeonsook & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference of structural error in inverse models of thermal response tests," Applied Energy, Elsevier, vol. 228(C), pages 1473-1485.
    17. Hobyung Chae & Katsunori Nagano & Yoshitaka Sakata & Takao Katsura & Ahmed A. Serageldin & Takeshi Kondo, 2020. "Analysis of Relaxation Time of Temperature in Thermal Response Test for Design of Borehole Size," Energies, MDPI, vol. 13(13), pages 1-20, June.
    18. Baldi, Simone & Yuan, Shuai & Endel, Petr & Holub, Ondrej, 2016. "Dual estimation: Constructing building energy models from data sampled at low rate," Applied Energy, Elsevier, vol. 169(C), pages 81-92.
    19. Nian, Yong-Le & Wang, Xiang-Yang & Xie, Kun & Cheng, Wen-Long, 2020. "Estimation of ground thermal properties for coaxial BHE through distributed thermal response test," Renewable Energy, Elsevier, vol. 152(C), pages 1209-1219.
    20. Wu, Xuan & Wang, Zhengwen & Jin, Guang & Yang, Xue & Zhang, Zhiqiang & Bi, Wenming, 2016. "Development and experimental study on testing platform for rock-soil thermal response tester," Renewable Energy, Elsevier, vol. 87(P1), pages 765-771.
    21. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    22. Zhang, Xueping & Han, Zongwei & Meng, Xinwei & Li, Gui & Ji, Qiang & Li, Xiuming & Yang, Lingyan, 2021. "Study on high-precision identification method of ground thermal properties based on neural network model," Renewable Energy, Elsevier, vol. 163(C), pages 1838-1848.
    23. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    24. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 2: Numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment," Renewable Energy, Elsevier, vol. 85(C), pages 1090-1105.
    2. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
    3. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    4. Nian, Yong-Le & Wang, Xiang-Yang & Xie, Kun & Cheng, Wen-Long, 2020. "Estimation of ground thermal properties for coaxial BHE through distributed thermal response test," Renewable Energy, Elsevier, vol. 152(C), pages 1209-1219.
    5. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    6. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    7. Changlong Wang & Qiang Fu & Han Fang & Jinli Lu, 2022. "Estimation of Ground Thermal Properties of Shallow Coaxial Borehole Heat Exchanger Using an Improved Parameter Estimation Method," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    8. Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
    9. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    10. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    11. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    12. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    13. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    14. Li, Min & Zhang, Liwen & Liu, Gang, 2020. "Step-wise algorithm for estimating multi-parameter of the ground and geothermal heat exchangers from thermal response tests," Renewable Energy, Elsevier, vol. 150(C), pages 435-442.
    15. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    16. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    17. Yongjie Ma & Yanjun Zhang & Yuxiang Cheng & Yu Zhang & Xuefeng Gao & Kun Shan, 2022. "A Case Study of Field Thermal Response Test and Laboratory Test Based on Distributed Optical Fiber Temperature Sensor," Energies, MDPI, vol. 15(21), pages 1-20, October.
    18. Jensen-Page, Linden & Narsilio, Guillermo A. & Bidarmaghz, Asal & Johnston, Ian W., 2018. "Investigation of the effect of seasonal variation in ground temperature on thermal response tests," Renewable Energy, Elsevier, vol. 125(C), pages 609-619.
    19. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    20. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:148:y:2015:i:c:p:476-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.