IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v130y2014icp396-402.html
   My bibliography  Save this article

Detailed kinetic modeling of homogeneous H2SO4 decomposition in the sulfur–iodine cycle for hydrogen production

Author

Listed:
  • Zhang, Yanwei
  • Yang, Hui
  • Zhou, Junhu
  • Wang, Zhihua
  • Liu, Jianzhong
  • Cen, Kefa

Abstract

This study presents a detailed kinetic mechanism conducted by CHEMKIN for the homogeneous decomposition of SO3–H2O vapor in the sulfur–iodine cycle. The kinetic mechanism involving 27 reactions and 11 species was validated by experimental results. The effects of temperature, SO3/H2O ratio, residence time, and pressure on the decomposition rate of SO3 were studied by modeling. SO3 conversion rapidly increased with increasing temperature but only moderately increased with the addition of H2O in the kinetic process. The SO3 conversion ratio was slightly promoted with residence time at 1000K and 1100K. Meanwhile, SO3 conversion sharply increased with reaction time at 1300K to 1400K. The results of sensitivity analysis showed that elementary reactions (2) SO3=SO2+O, (3) SO3+O=SO2+O2, (12) 2HO2=H2O2+O2, and (13) HO2=H+O2 had important functions in SO3 decomposition. The reaction path of homogenous H2SO4 splitting was constructed based on detailed kinetic modeling and sensitivity analysis.

Suggested Citation

  • Zhang, Yanwei & Yang, Hui & Zhou, Junhu & Wang, Zhihua & Liu, Jianzhong & Cen, Kefa, 2014. "Detailed kinetic modeling of homogeneous H2SO4 decomposition in the sulfur–iodine cycle for hydrogen production," Applied Energy, Elsevier, vol. 130(C), pages 396-402.
  • Handle: RePEc:eee:appene:v:130:y:2014:i:c:p:396-402
    DOI: 10.1016/j.apenergy.2014.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914005121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongqiang & Tan, Geng & Zhang, Wenyu & Suppiah, Sam, 2012. "Development of direct resistive heating method for SO3 decomposition in the S–I cycle for hydrogen production," Applied Energy, Elsevier, vol. 93(C), pages 59-64.
    2. Li, Po-Jui & Hung, Tzu-Chen & Pei, Bau-Shei & Lin, Jaw-Ren & Chieng, Ching-Chang & Yu, Ge-Ping, 2012. "A thermodynamic analysis of high temperature gas-cooled reactors for optimal waste heat recovery and hydrogen production," Applied Energy, Elsevier, vol. 99(C), pages 183-191.
    3. Grob, Gustav R., 2003. "Importance of ISO and IEC international energy standards and a new total approach to energy statistics and forecasting," Applied Energy, Elsevier, vol. 76(1-3), pages 39-54, September.
    4. Zhang, Yanwei & Zhu, Qiaoqiao & Lin, Xiangdong & Xu, Zemin & Liu, Jianbo & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2013. "A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources," Applied Energy, Elsevier, vol. 108(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Qi & Gao, Qunxiang & Zhang, Ping & Peng, Wei & Chen, Songzhe, 2020. "Modeling sulfuric acid decomposition in a bayonet heat exchanger in the iodine-sulfur cycle for hydrogen production," Applied Energy, Elsevier, vol. 277(C).
    2. Shin, Youngjoon & Lee, Taehoon & Lee, Kiyoung & Kim, Minhwan, 2016. "Modeling and simulation of HI and H2SO4 thermal decomposers for a 50NL/h sulfur-iodine hydrogen production test facility," Applied Energy, Elsevier, vol. 173(C), pages 460-469.
    3. Ghandehariun, S. & Wang, Z. & Naterer, G.F. & Rosen, M.A., 2015. "Experimental investigation of molten salt droplet quenching and solidification processes of heat recovery in thermochemical hydrogen production," Applied Energy, Elsevier, vol. 157(C), pages 267-275.
    4. Shin, Youngjoon & Lim, Jihong & Lee, Taehoon & Lee, Kiyoung & Jo, Changkeun & Kim, Minhwan, 2017. "Designs and CFD analyses of H2SO4 and HI thermal decomposers for a semi-pilot scale SI hydrogen production test facility," Applied Energy, Elsevier, vol. 204(C), pages 390-402.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yanwei & Xu, Chenyu & Chen, Jingche & Zhang, Xuhan & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy," Applied Energy, Elsevier, vol. 156(C), pages 223-229.
    2. Shin, Youngjoon & Lee, Taehoon & Lee, Kiyoung & Kim, Minhwan, 2016. "Modeling and simulation of HI and H2SO4 thermal decomposers for a 50NL/h sulfur-iodine hydrogen production test facility," Applied Energy, Elsevier, vol. 173(C), pages 460-469.
    3. Nguyen, Thanh D.B. & Gho, Yun-Ki & Cho, Won Chul & Kang, Kyoung Soo & Jeong, Seong Uk & Kim, Chang Hee & Park, Chu-Sik & Bae, Ki-Kwang, 2014. "Kinetics and modeling of hydrogen iodide decomposition for a bench-scale sulfur–iodine cycle," Applied Energy, Elsevier, vol. 115(C), pages 531-539.
    4. Zhang, Yanwei & Zhu, Qiaoqiao & Lin, Xiangdong & Xu, Zemin & Liu, Jianbo & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2013. "A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources," Applied Energy, Elsevier, vol. 108(C), pages 1-7.
    5. Mohammed A. Al-Ghamdi & Khalid S. Al-Gahtani, 2022. "Integrated Value Engineering and Life Cycle Cost Modeling for HVAC System Selection," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    6. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    7. Wang, Yuanqing & Jin, Fangming & Zeng, Xu & Ma, Cuixiang & Wang, Fengwen & Yao, Guodong & Jing, Zhenzi, 2013. "Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions," Applied Energy, Elsevier, vol. 104(C), pages 306-309.
    8. Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
    9. Sánchez, David & Bortkiewicz, Anna & Rodríguez, José M. & Martínez, Gonzalo S. & Gavagnin, Giacomo & Sánchez, Tomás, 2016. "A methodology to identify potential markets for small-scale solar thermal power generators," Applied Energy, Elsevier, vol. 169(C), pages 287-300.
    10. Gangyang, Zheng & Xianke, Peng & Xiaozhen, Li & Yexi, Kang & Xiangeng, Zhao, 2021. "Research on the standardization strategy of China's nuclear industry," Energy Policy, Elsevier, vol. 155(C).
    11. Shuai Yu & Yi Yang & Shuqin Chen & Haowei Xing & Yinan Guo & Weijia Feng & Jianchao Zhang & Junhan Zhang, 2024. "Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production," Sustainability, MDPI, vol. 16(5), pages 1-46, February.
    12. Shin, Youngjoon & Lim, Jihong & Lee, Taehoon & Lee, Kiyoung & Jo, Changkeun & Kim, Minhwan, 2017. "Designs and CFD analyses of H2SO4 and HI thermal decomposers for a semi-pilot scale SI hydrogen production test facility," Applied Energy, Elsevier, vol. 204(C), pages 390-402.
    13. Zhao, Chuanwen & Guo, Yafei & Li, Changhai & Lu, Shouxiang, 2014. "Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents," Applied Energy, Elsevier, vol. 124(C), pages 241-247.
    14. Ghandehariun, S. & Wang, Z. & Naterer, G.F. & Rosen, M.A., 2015. "Experimental investigation of molten salt droplet quenching and solidification processes of heat recovery in thermochemical hydrogen production," Applied Energy, Elsevier, vol. 157(C), pages 267-275.
    15. Reichl, Johannes & Kollmann, Andrea, 2011. "The baseline in bottom-up energy efficiency and saving calculations - A concept for its formalisation and a discussion of relevant options," Applied Energy, Elsevier, vol. 88(2), pages 422-431, February.
    16. Sun, Qi & Gao, Qunxiang & Zhang, Ping & Peng, Wei & Chen, Songzhe, 2020. "Modeling sulfuric acid decomposition in a bayonet heat exchanger in the iodine-sulfur cycle for hydrogen production," Applied Energy, Elsevier, vol. 277(C).
    17. Nakakura, Mitsuho & Matsubara, Koji & Cho, Hyun-Seok & Kodama, Tatsuya & Gokon, Nobuyuki & Bellan, Selvan & Yoshida, Kazuo, 2017. "Buoyancy-opposed volumetric solar receiver with beam-down optics irradiation," Energy, Elsevier, vol. 141(C), pages 2337-2350.
    18. Ni, Hang & Qu, Xinhe & Peng, Wei & Zhao, Gang & Zhang, Ping, 2023. "Study of two innovative hydrogen and electricity co-production systems based on very-high-temperature gas-cooled reactors," Energy, Elsevier, vol. 273(C).
    19. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:130:y:2014:i:c:p:396-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.