IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp390-402.html
   My bibliography  Save this article

Designs and CFD analyses of H2SO4 and HI thermal decomposers for a semi-pilot scale SI hydrogen production test facility

Author

Listed:
  • Shin, Youngjoon
  • Lim, Jihong
  • Lee, Taehoon
  • Lee, Kiyoung
  • Jo, Changkeun
  • Kim, Minhwan

Abstract

Based on our previous study on the experimental performance tests of the catalyst-packed type HI thermal decomposer and bayonet type H2SO4 thermal decomposer for a 50 NL-H2/h SI test facility, which were directly heated using electrical heating chambers, semi-pilot scale H2SO4 and HI decomposers for the 1Nm3-H2/h SI test facility coupled to an out-of-pile helium loop have been designed, and it was theoretically confirmed that the design specifications satisfy the hydrogen production capacity based on a Computational Fluid Dynamics (CFD) analysis. The effects of the overall heat transfer coefficient on the helium outlet temperatures and decomposition percentages of the decomposers were identified. The H2SO4 and HI decomposers proposed are capable of outlet helium temperatures of 734°C and 383°C for an overall heat transfer coefficient of 5W/m2K, respectively, which satisfy the operating temperature conditions of the out-of-pile helium loop. The average thermal decomposition percentages of the proposed decomposers are 60.4% for sulfuric acid and 22.4% for hydrogen iodide. These decomposition percentages obtained from the numerical results are acceptable with a hydrogen production rate of 1Nm3-H2/h. Modification points of the decomposers to increase the decomposition percentages are suggested, such as a minimization of heat loss into the atmosphere and optimization of component designs.

Suggested Citation

  • Shin, Youngjoon & Lim, Jihong & Lee, Taehoon & Lee, Kiyoung & Jo, Changkeun & Kim, Minhwan, 2017. "Designs and CFD analyses of H2SO4 and HI thermal decomposers for a semi-pilot scale SI hydrogen production test facility," Applied Energy, Elsevier, vol. 204(C), pages 390-402.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:390-402
    DOI: 10.1016/j.apenergy.2017.07.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917309273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin, Youngjoon & Lee, Taehoon & Lee, Kiyoung & Kim, Minhwan, 2016. "Modeling and simulation of HI and H2SO4 thermal decomposers for a 50NL/h sulfur-iodine hydrogen production test facility," Applied Energy, Elsevier, vol. 173(C), pages 460-469.
    2. Zhang, Yanwei & Yang, Hui & Zhou, Junhu & Wang, Zhihua & Liu, Jianzhong & Cen, Kefa, 2014. "Detailed kinetic modeling of homogeneous H2SO4 decomposition in the sulfur–iodine cycle for hydrogen production," Applied Energy, Elsevier, vol. 130(C), pages 396-402.
    3. Li, Po-Jui & Hung, Tzu-Chen & Pei, Bau-Shei & Lin, Jaw-Ren & Chieng, Ching-Chang & Yu, Ge-Ping, 2012. "A thermodynamic analysis of high temperature gas-cooled reactors for optimal waste heat recovery and hydrogen production," Applied Energy, Elsevier, vol. 99(C), pages 183-191.
    4. Nguyen, Thanh D.B. & Gho, Yun-Ki & Cho, Won Chul & Kang, Kyoung Soo & Jeong, Seong Uk & Kim, Chang Hee & Park, Chu-Sik & Bae, Ki-Kwang, 2014. "Kinetics and modeling of hydrogen iodide decomposition for a bench-scale sulfur–iodine cycle," Applied Energy, Elsevier, vol. 115(C), pages 531-539.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Qi & Gao, Qunxiang & Zhang, Ping & Peng, Wei & Chen, Songzhe, 2020. "Modeling sulfuric acid decomposition in a bayonet heat exchanger in the iodine-sulfur cycle for hydrogen production," Applied Energy, Elsevier, vol. 277(C).
    2. Ni, Hang & Peng, Wei & Qu, Xinhe & Zhao, Gang & Zhang, Ping & Wang, Jie, 2022. "Thermodynamic analysis of a novel hydrogen–electricity–heat polygeneration system based on a very high-temperature gas-cooled reactor," Energy, Elsevier, vol. 249(C).
    3. Ni, Hang & Qu, Xinhe & Peng, Wei & Zhao, Gang & Zhang, Ping, 2023. "Study of two innovative hydrogen and electricity co-production systems based on very-high-temperature gas-cooled reactors," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Youngjoon & Lee, Taehoon & Lee, Kiyoung & Kim, Minhwan, 2016. "Modeling and simulation of HI and H2SO4 thermal decomposers for a 50NL/h sulfur-iodine hydrogen production test facility," Applied Energy, Elsevier, vol. 173(C), pages 460-469.
    2. Sun, Qi & Gao, Qunxiang & Zhang, Ping & Peng, Wei & Chen, Songzhe, 2020. "Modeling sulfuric acid decomposition in a bayonet heat exchanger in the iodine-sulfur cycle for hydrogen production," Applied Energy, Elsevier, vol. 277(C).
    3. Qunxiang Gao & Ping Zhang & Wei Peng & Songzhe Chen & Gang Zhao, 2021. "Structural Design Simulation of Bayonet Heat Exchanger for Sulfuric Acid Decomposition," Energies, MDPI, vol. 14(2), pages 1-18, January.
    4. Shuai Yu & Yi Yang & Shuqin Chen & Haowei Xing & Yinan Guo & Weijia Feng & Jianchao Zhang & Junhan Zhang, 2024. "Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production," Sustainability, MDPI, vol. 16(5), pages 1-46, February.
    5. Zhang, Yanwei & Yang, Hui & Zhou, Junhu & Wang, Zhihua & Liu, Jianzhong & Cen, Kefa, 2014. "Detailed kinetic modeling of homogeneous H2SO4 decomposition in the sulfur–iodine cycle for hydrogen production," Applied Energy, Elsevier, vol. 130(C), pages 396-402.
    6. Ni, Hang & Peng, Wei & Qu, Xinhe & Zhao, Gang & Zhang, Ping & Wang, Jie, 2022. "Thermodynamic analysis of a novel hydrogen–electricity–heat polygeneration system based on a very high-temperature gas-cooled reactor," Energy, Elsevier, vol. 249(C).
    7. Ghandehariun, S. & Wang, Z. & Naterer, G.F. & Rosen, M.A., 2015. "Experimental investigation of molten salt droplet quenching and solidification processes of heat recovery in thermochemical hydrogen production," Applied Energy, Elsevier, vol. 157(C), pages 267-275.
    8. Zhang, Yanwei & Zhu, Qiaoqiao & Lin, Xiangdong & Xu, Zemin & Liu, Jianbo & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2013. "A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources," Applied Energy, Elsevier, vol. 108(C), pages 1-7.
    9. Ni, Hang & Qu, Xinhe & Peng, Wei & Zhao, Gang & Zhang, Ping, 2023. "Study of two innovative hydrogen and electricity co-production systems based on very-high-temperature gas-cooled reactors," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:390-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.