IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp808-817.html
   My bibliography  Save this article

A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion

Author

Listed:
  • Ström, Henrik
  • Thunman, Henrik

Abstract

Fixed-bed conversion is one of the standard methods for conversion of biofuels. However, in several cases the performance observed in applications of fixed-bed conversion of biomass and waste is far from optimal. Mathematical modeling using computational fluid dynamics (CFD) has a large potential to assist in the optimization of the fuel conversion processes, with regard to parameters such as burnout, emissions, fuel flexibility and material wear. To this end, computationally efficient models that can handle the most important features of the fuel conversion processes are needed.

Suggested Citation

  • Ström, Henrik & Thunman, Henrik, 2013. "A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion," Applied Energy, Elsevier, vol. 112(C), pages 808-817.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:808-817
    DOI: 10.1016/j.apenergy.2012.12.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912009488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.12.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Probert, S. D. & Kerr, K. & Brown, J., 1987. "Harnessing energy from domestic, municipal and industrial refuse," Applied Energy, Elsevier, vol. 27(2), pages 89-168.
    2. Wang, Xiaoquan & Morrison, William & Du, Zhenyi & Wan, Yiqin & Lin, Xiangyang & Chen, Paul & Ruan, Roger, 2012. "Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition," Applied Energy, Elsevier, vol. 99(C), pages 386-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caposciutti, Gianluca & Barontini, Federica & Antonelli, Marco & Tognotti, Leonardo & Desideri, Umberto, 2018. "Experimental investigation on the air excess and air displacement influence on early stage and complete combustion gaseous emissions of a small scale fixed bed biomass boiler," Applied Energy, Elsevier, vol. 216(C), pages 576-587.
    2. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    3. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
    4. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & El-Salam, M. Abd & Zhou, Wei & Zhang, Ruihan & Ren, Xiaohan, 2018. "Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach," Energy, Elsevier, vol. 151(C), pages 501-519.
    5. Kortela, J. & Jämsä-Jounela, S.-L., 2014. "Model predictive control utilizing fuel and moisture soft-sensors for the BioPower 5 combined heat and power (CHP) plant," Applied Energy, Elsevier, vol. 131(C), pages 189-200.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    2. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
    3. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    4. Siddique, Istiaq Jamil & Salema, Arshad Adam, 2023. "Unraveling the metallic thermocouple effects during microwave heating of biomass," Energy, Elsevier, vol. 267(C).
    5. Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
    6. Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Luo, Juan & Ma, Rui & Huang, Xiaofei & Sun, Shichang & Wang, Hao, 2020. "Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge," Applied Energy, Elsevier, vol. 266(C).
    8. Klinger, Jordan L. & Westover, Tyler L. & Emerson, Rachel M. & Williams, C. Luke & Hernandez, Sergio & Monson, Glen D. & Ryan, J. Chadron, 2018. "Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities," Applied Energy, Elsevier, vol. 228(C), pages 535-545.
    9. El Khaled, D. & Novas, N. & Gázquez, J.A. & García, R.M. & Manzano-Agugliaro, F., 2016. "Alcohols and alcohols mixtures as liquid biofuels: A review of dielectric properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 556-571.
    10. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    11. Mutsengerere, S. & Chihobo, C.H. & Musademba, D. & Nhapi, I., 2019. "A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 328-336.
    12. Muley, P.D. & Henkel, C.E. & Aguilar, G. & Klasson, K.T. & Boldor, D., 2016. "Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor," Applied Energy, Elsevier, vol. 183(C), pages 995-1004.
    13. Motasemi, F. & Afzal, Muhammad T. & Salema, Arshad Adam & Moghavvemi, M. & Shekarchian, M. & Zarifi, F. & Mohsin, R., 2014. "Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035," Energy, Elsevier, vol. 64(C), pages 355-366.
    14. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2015. "Effects of lignocellulosic composition and microwave power level on the gaseous product of microwave pyrolysis," Energy, Elsevier, vol. 89(C), pages 974-981.
    15. Huang, Yu-Fong & Sung, Hsuan-Te & Chiueh, Pei-Te & Lo, Shang-Lien, 2016. "Co-torrefaction of sewage sludge and leucaena by using microwave heating," Energy, Elsevier, vol. 116(P1), pages 1-7.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:808-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.