IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp833-839.html
   My bibliography  Save this article

Pursuing the pre-combustion CCS route in oil refineries – The impact on fired heaters

Author

Listed:
  • Weydahl, Torleif
  • Jamaluddin, Jamal
  • Seljeskog, Morten
  • Anantharaman, Rahul

Abstract

The work presented in this paper investigates the effect of replacing refinery fuel gas in the radiant section burners of a fired heater with hydrogen. The aim is to approach pre-combustion CCS to refinery fired heaters by identifying the impact on heat-, flow- and radiation distribution in the lower radiant section of the fired heater when simply switching refinery gas with hydrogen at equivalent power using the same burner geometrics. Additionally the formation of NOx is considered. The investigations are performed using a conventional Reynolds Average Navier Stokes (RANS), Computational Fluid Dynamics (CFD) approach using detailed reaction kinetics consisting of 325 elementary reactions and 53 species. Simplified and generalized furnace and burner geometries are used in the present work. The results show that approximately the same average wall heat flux density is achieved when the refinery fuel is replaced by hydrogen. However, the distribution of heat on the inner surfaces changes. The hydrogen case has, as expected, a higher flame temperature than the base case, nevertheless, the nitric oxide (NOx) emissions are comparable to base case emissions. Several indications point in the direction of a significant contribution to the base case emissions from the less temperature dependent prompt-NO mechanism, which obviously is not contributing to the hydrogen case emissions.

Suggested Citation

  • Weydahl, Torleif & Jamaluddin, Jamal & Seljeskog, Morten & Anantharaman, Rahul, 2013. "Pursuing the pre-combustion CCS route in oil refineries – The impact on fired heaters," Applied Energy, Elsevier, vol. 102(C), pages 833-839.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:833-839
    DOI: 10.1016/j.apenergy.2012.08.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912006319
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:appene:v:205:y:2017:i:c:p:428-439 is not listed on IDEAS
    2. Martínez, I. & Romano, M.C. & Fernández, J.R. & Chiesa, P. & Murillo, R. & Abanades, J.C., 2014. "Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop," Applied Energy, Elsevier, vol. 114(C), pages 192-208.
    3. Zhang, Xian & Wang, Xingwei & Chen, Jiajun & Xie, Xi & Wang, Ke & Wei, Yiming, 2014. "A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties," Applied Energy, Elsevier, vol. 113(C), pages 1059-1067.
    4. Al-Salem, S.M., 2015. "Carbon dioxide (CO2) emission sources in Kuwait from the downstream industry: Critical analysis with a current and futuristic view," Energy, Elsevier, vol. 81(C), pages 575-587.
    5. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: climate change modelling with backstop technology," MPRA Paper 80549, University Library of Munich, Germany.
    6. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    7. Xing, Ji & Liu, Zhenyi & Huang, Ping & Feng, Changgen & Zhou, Yi & Sun, Ruiyan & Wang, Shigang, 2014. "CFD validation of scaling rules for reduced-scale field releases of carbon dioxide," Applied Energy, Elsevier, vol. 115(C), pages 525-530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:833-839. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.