IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v491y2025ics0096300324006787.html
   My bibliography  Save this article

Hybrid control for the prey in a spatial prey-predator model with cooperative hunting and fear effect time lag

Author

Listed:
  • Mu, Yu
  • Lo, Wing-Cheong
  • Tan, Yuanshun
  • Liu, Zijian

Abstract

In the ecosystem, the chase of the predator with cooperation contributes to fear psychology in the prey, resulting in behavioral changes such as a decrease in the birth rate. We construct a spatially diffusive model with delay to investigate the combined perturbation of these factors. Initially, we establish the existence of positive solutions and examine the stability of steady-state solutions under varying conditions. The bifurcation dynamics of the positive solutions have been analyzed. Turing instability, arising from the random diffusion of the species, generates spatially irregular patterns characterized by patchy distribution of prey and predators in the spatial domain. Hopf bifurcation, resulting from the diffusive rate and delay, contributes to spatially periodic solutions where the number of species will spatially oscillate. The combined influence of diffusion and delay results in the emergence of Turing and Hopf bifurcation phenomena. In this case, the combined effect amplifies the spatially heterogeneous distribution of prey and predator. Our results reveal the heterogeneous behaviors of prey and predator under the coupled influence of cooperation hunting and fear effects. In this paper, we will also study a hybrid control scheme for controlling the generations of Turing patterns and Hopf bifurcation. Our theoretical results and numerical simulations demonstrate that the control scheme can mitigate the negative influence of combined factors and promote the species' stability.

Suggested Citation

  • Mu, Yu & Lo, Wing-Cheong & Tan, Yuanshun & Liu, Zijian, 2025. "Hybrid control for the prey in a spatial prey-predator model with cooperative hunting and fear effect time lag," Applied Mathematics and Computation, Elsevier, vol. 491(C).
  • Handle: RePEc:eee:apmaco:v:491:y:2025:i:c:s0096300324006787
    DOI: 10.1016/j.amc.2024.129217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324006787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott Creel & Paul Schuette & David Christianson, 2014. "Effects of predation risk on group size, vigilance, and foraging behavior in an African ungulate community," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 773-784.
    2. Evan L Preisser & Daniel I Bolnick, 2008. "The Many Faces of Fear: Comparing the Pathways and Impacts of Nonconsumptive Predator Effects on Prey Populations," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-8, June.
    3. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
    4. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2023. "Qualitative study of cross-diffusion and pattern formation in Leslie–Gower predator–prey model with fear and Allee effects," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Zhou, Weigang & Huang, Chengdai & Xiao, Min & Cao, Jinde, 2019. "Hybrid tactics for bifurcation control in a fractional-order delayed predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 183-191.
    6. Huang, Chengdai & Li, Huan & Cao, Jinde, 2019. "A novel strategy of bifurcation control for a delayed fractional predator–prey model," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 808-838.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumbhakar, Ruma & Hossain, Mainul & Pal, Nikhil, 2024. "Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. He, Haoming & Xiao, Min & Lu, Yunxiang & Wang, Zhen & Tao, Binbin, 2023. "Control of tipping in a small-world network model via a novel dynamic delayed feedback scheme," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    4. Liu, Junli & Liu, Bairu & Lv, Pan & Zhang, Tailei, 2021. "An eco-epidemiological model with fear effect and hunting cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Yang Zhao & Chun-Xiao Huang & Yiming Gu & Yacong Zhao & Wenjie Ren & Yutong Wang & Jinjin Chen & Na N. Guan & Jianren Song, 2024. "Serotonergic modulation of vigilance states in zebrafish and mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Bentout, Soufiane & Djilali, Salih & Kumar, Sunil, 2021. "Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    8. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Cao, Jinde & Alsaedi, Ahmed, 2020. "Extended feedback and simulation strategies for a delayed fractional-order control system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Ramasamy, Sivasamy & Banjerdpongchai, David & Park, PooGyeon, 2025. "Stability and Hopf-bifurcation analysis of diffusive Leslie–Gower prey–predator model with the Allee effect and carry-over effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 227(C), pages 19-40.
    11. Li, Shuai & Huang, Chengdai & Song, Xinyu, 2023. "Detection of Hopf bifurcations induced by pregnancy and maturation delays in a spatial predator–prey model via crossing curves method," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    13. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
    14. Mukherjee, Debasis, 2020. "Role of fear in predator–prey system with intraspecific competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 263-275.
    15. Sekerci, Yadigar, 2020. "Climate change effects on fractional order prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    16. Ghosh, Uttam & Pal, Swadesh & Banerjee, Malay, 2021. "Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    17. Du, Wentong & Xiao, Min & Ding, Jie & Yao, Yi & Wang, Zhengxin & Yang, Xinsong, 2023. "Fractional-order PD control at Hopf bifurcation in a delayed predator–prey system with trans-species infectious diseases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 414-438.
    18. Narayan Mondal & Dipesh Barman & Shariful Alam, 2021. "Impact of adult predator incited fear in a stage-structured prey–predator model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9280-9307, June.
    19. Wang, Henan & Liu, Ping, 2023. "Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    20. Pal, Debjit & Ghorai, Santu & Kesh, Dipak & Mukherjee, Debasis, 2024. "Hopf bifurcation and patterns formation in a diffusive two prey-one predator system with fear in preys and help," Applied Mathematics and Computation, Elsevier, vol. 481(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:491:y:2025:i:c:s0096300324006787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.