IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v489y2025ics0096300324006441.html
   My bibliography  Save this article

Evolution of cooperation among fairness-seeking agents in spatial public goods game

Author

Listed:
  • Zhang, Hong

Abstract

The evolution of cooperation is a pivotal area of study, essential for understanding the survival and success of complex biological and social systems. This paper investigates the dynamics of cooperation in spatial public goods games (SPGG) through a model that incorporates a fairness-driven migration mechanism. In this model, agents move towards environments perceived as fairer, influencing the spatial distribution and overall level of cooperation within the population. We examine the interplay between the time scale ratio, noise in movement, and population density. Our analysis reveals that moderate levels of movement and noise are critical for forming and maintaining cooperative clusters, while excessive movement and noise disrupt these structures, leading to reduced cooperation. Higher enhancement factors increase the resilience of cooperative behavior, extending the range of movement intensity over which high cooperation levels are maintained. Population density significantly impacts cooperative dynamics, with high-density environments promoting the coexistence of cooperators and defectors but lowering the highest achievable cooperation levels due to increased exploitation. Our findings underscore the importance of balancing movement, noise, and density to sustain cooperation and stable social structures. This research provides valuable insights for designing interventions and policies to promote cooperative behavior and social cohesion in complex populations. Future studies should further explore the adaptive mechanisms that dynamically adjust movement and strategy adaptation based on local environmental conditions.

Suggested Citation

  • Zhang, Hong, 2025. "Evolution of cooperation among fairness-seeking agents in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 489(C).
  • Handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324006441
    DOI: 10.1016/j.amc.2024.129183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324006441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Mie & Kang, HongWei & Shen, Yong & Sun, XingPing & Chen, QingYi, 2021. "The role of alliance cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Wang, Xiaofeng & Perc, Matjaž, 2021. "Emergence of cooperation in spatial social dilemmas with expulsion," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    3. Simon Gachter & Ernst Fehr, 2000. "Cooperation and Punishment in Public Goods Experiments," American Economic Review, American Economic Association, vol. 90(4), pages 980-994, September.
    4. repec:plo:pone00:0184459 is not listed on IDEAS
    5. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Shilin Xiao & Liming Zhang & Haihong Li & Qionglin Dai & Junzhong Yang, 2022. "Environment-driven migration enhances cooperation in evolutionary public goods games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-9, April.
    7. Jiang, Zhi-Qiang & Wang, Peng & Ma, Jun-Chao & Zhu, Peican & Han, Zhen & Podobnik, Boris & Stanley, H. Eugene & Zhou, Wei-Xing & Alfaro-Bittner, Karin & Boccaletti, Stefano, 2023. "Unraveling the effects of network, direct and indirect reciprocity in online societies," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Stéphane Debove & Nicolas Baumard & Jean-Baptiste André, 2017. "On the evolutionary origins of equity," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-16, March.
    9. Martin A. Nowak & Karl Sigmund, 1998. "Evolution of indirect reciprocity by image scoring," Nature, Nature, vol. 393(6685), pages 573-577, June.
    10. M.A. Nowak & K. Sigmund, 1998. "Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity," Working Papers ir98040, International Institute for Applied Systems Analysis.
    11. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Inter-group selection of strategy promotes cooperation in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    12. Zhu, Cheng-jie & Sun, Shi-wen & Wang, Li & Ding, Shuai & Wang, Juan & Xia, Cheng-yi, 2014. "Promotion of cooperation due to diversity of players in the spatial public goods game with increasing neighborhood size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 145-154.
    13. Li, Wen-Jing & Chen, Zhi & Wang, Jun & Jiang, Luo-Luo & Perc, Matjaž, 2023. "Social mobility and network reciprocity shape cooperation in collaborative networks," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    14. Ren, Tianyu & Zheng, Junjun, 2021. "Evolutionary dynamics in the spatial public goods game with tolerance-based expulsion and cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hong, 2023. "Evolution of cooperation with tag-based expulsion in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Kang, Hongwei & Li, Xin & Shen, Yong & Sun, Xingping & Chen, Qingyi, 2024. "Particle swarm optimization with historical return decay enhances cooperation in public goods games with investment risks," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    3. Xie, Kai & Liu, Tingjin, 2024. "The regulation of good and evi promotes cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    4. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    5. Cubitt, Robin P. & Drouvelis, Michalis & Gächter, Simon & Kabalin, Ruslan, 2011. "Moral judgments in social dilemmas: How bad is free riding?," Journal of Public Economics, Elsevier, vol. 95(3), pages 253-264.
    6. Molina, José Alberto & Ferrer, Alfredo & Gimenez-Nadal, José Ignacio & Gracia-Lazaro, Carlos & Moreno, Yamir & Sanchez, Angel, 2016. "The Effect of Kinship on Intergenerational Cooperation: A Lab Experiment with Three Generations," IZA Discussion Papers 9842, Institute of Labor Economics (IZA).
    7. Gary Bolton & Ben Greiner & Axel ockenfels, 2015. "Conflict resolution vs. conflict escalation in online markets," Discussion Papers 2015-19, School of Economics, The University of New South Wales.
    8. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Angelo Antoci & Luca Zarri, 2015. "Punish and perish?," Rationality and Society, , vol. 27(2), pages 195-223, May.
    10. Zou, Kuan & Huang, Changwei, 2024. "Incorporating reputation into reinforcement learning can promote cooperation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    11. Yu, Fengyuan & Wang, Jianwei & Chen, Wei & He, Jialu, 2023. "Increased cooperation potential and risk under suppressed strategy differentiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    12. Xiaofei Sophia Pan & Daniel Houser, 2011. "Competition for Trophies Triggers Male Generosity," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-6, April.
    13. Bogliacino, Francesco & Codagnone, Cristiano, 2021. "Microfoundations, behaviour, and evolution: Evidence from experiments," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 372-385.
    14. Quan, Ji & Nie, Jiacheng & Chen, Wenman & Wang, Xianjia, 2022. "Keeping or reversing social norms promote cooperation by enhancing indirect reciprocity," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    15. Shimpei Koike & Mayuko Nakamaru & Tokinao Otaka & Hajime Shimao & Ken-Ichi Shimomura & Takehiko Yamato, 2018. "Reciprocity and exclusion in informal financial institutions: An experimental study of rotating savings and credit associations," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    16. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    17. Si, Zehua & He, Zhixue & Shen, Chen & Tanimoto, Jun, 2023. "Speculative defectors as unexpected insulators of super cooperators in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    18. Sheen S. Levine & Michael J. Prietula, 2014. "Open Collaboration for Innovation: Principles and Performance," Organization Science, INFORMS, vol. 25(5), pages 1414-1433, October.
    19. Isamu Okada, 2020. "A Review of Theoretical Studies on Indirect Reciprocity," Games, MDPI, vol. 11(3), pages 1-17, July.
    20. Giangiacomo Bravo & Lucia Tamburino, 2008. "The Evolution of Trust in Non-Simultaneous Exchange Situations," Rationality and Society, , vol. 20(1), pages 85-113, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:489:y:2025:i:c:s0096300324006441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.